Математическое моделирование образовательного портала вуза на основе технологии нейронных сетей
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mathematical modeling of the system for assessing students’ assimilation level of the university educational portal material using neural network technology

Kasatkina T.I. 

UDC 004.02; 004.588; 004.942; 378.1
DOI: 10.26102/2310-6018/2021.35.4.029

  • Abstract
  • List of references
  • About authors

The article analyzes the methods of evaluating universities’ educational portals effectiveness. Among the methods considered, the following were identified: assessment of the formal educational materials’ compliance with regulatory documents; the method of expert assessments; a Web-analytical approach using SEO audit; a combined approach; the method of information and semantic systems ISS and the graphical method of Euler-Wien diagrams. The article offers an approach to the representation of the university educational portal structure in the form of an oriented graph. As a criterion for the effectiveness of the university educational portal organization, it is proposed to use the total time spent by a student on each page of the educational portal for one session of work. In this case, the total time is represented as a function of the page views sequence and the viewing time for each page. The article puts forward an approach to determining the quality of educational information presentation and the effectiveness of training by evaluating the time spent by students on each page of the educational portal. The article suggests the application of an artificial neural network in processing data regarding the time of students' stay on the educational portal. A direct-directed artificial neural network with two hidden layers was chosen as an artificial neural network. The approach proposed in the article can be utilized in the organization of both interactive learning using information technology tools and distance learning.

1. Levanov D.N., Feoktistov N.A. Osobennosti ispolzovaniya mnogosloinogo perseptrona pri avtomatizirovannom kontrole znanii v elektronnikch uchebnikch kursakch. Vestnik yevraziyskoy nauki = Bulletin of Eurasian Science. 2014;1(2):1-13. (In Russ.)

2. Kudinov I.V., Karunas E.V., Barinova N. A., Yashina O.S. Imitacionnie modeliruushie technologii v obrazovatelnom processe visshei shkoli. Vyssheye obrazovaniye segodnya = Higher education today. 2018;1(4):19-22. (In Russ.)

3. Gergel V.P., Borisov N.A., Karpenko S.N., Kuzenkova G.V., Shestakova N.V. Obrazovatelnii portal fakulteta vichislitelnoi matematiki I kibernetiki NNGY im. N.I. Lobachevskogo na platforme Microsoft SharePoint. Obrazovatel'nyye tekhnologii i obshchestvo = Educational technologies and society. 2014;14(17):465-478. (In Russ.)

4. Popova N.I. Otkritie obrazovatelnie resyrsi v usloviyakch distancionnogo podkchoda. Colloquium-journal. 2020;10(62):167-168. (In Russ.)

5. Chernavin D.A., Polyboyarov V.V., Vyilov D.A. Razrabotka informationnikch servisov portal universiteta. Novyye informatsionnyye tekhnologii v obrazovanii: Sbornik nauchnykh trudov 13-y mezhdunarodnoy nauchno-prakticheskoy konferentsii «Novyye informatsionnyye tekhnologii v obrazovanii» (Tekhnologii 1S dlya effektivnogo obucheniya i podgotovki = New information technologies in education: Collection of scientific papers of the 13th International Scientific and Practical Conference " New information technologies in education "(1C technologies for effective training and training of personnel in order to increase labor productivity January 29-30, 2013. M.: Publishing House 1C-Publishing LLC; 2013;2(1):1-10. (In Russ.)

6. Kulikov I.A. Razrabotka proekta sovremennogo saita fakulteta vuza. Gumanitarnaya informatika = Humanitarian informatics. 2015;9(1):149-157.2. (In Russ.)

7. Veryaeva Yu.A., Maksimov A.V., Ryazanov M.A. Razrabotka informationnoi struktyri web-saita kafedri vyza. Izvestiya Altayskogo gosudarstvennogo universiteta = Proceedings of the Altai State University. 2011;1:64-70. (In Russ.)

8. Krychinina G.A., Kanyanina T.I., Stepanova S.Yu. Sait I blog prepodavatelei vuza kak elementi setevikch kommunikacii: soderganie I principi funkcionirovaniya. Sovremennyye naukoyemkiye tekhnologii = Modern high-tech technologies. 2016;1(1):124-128. (In Russ.)

9. Kantorowitz R. Semantic User Interface Controls. = Proceedings of the European Conference on Cognitive Ergonomics. 2017;1 (1):61-62.

10. Sharma S., Rana V. Web Personalization through Semantic Annotation System. = Advances in Computational Sciences and Technology. 2017;10(6):1683-1690.

11. Kasatkina T.I. Matematicheskoe modelirovanie obrazovatelnogo portal vuza s ispolzovaniem neirosetevikch technologii. Innovatsionnyye resheniya sotsial'nykh, ekonomicheskikh i tekhnologicheskikh problem sovremennogo obshchestva. Sbornik nauchnykh statey po itogam kruglogo stola so vserossiyskim i mezhdunarodnym uchastiyem № 4. = Innovative solutions to social, economic and technological problems of modern society. Collection of scientific articles based on the results of the round table with All-Russian and international participation No. 4. M.: OOO «Konvert»; 2021:46-50. (In Russ.)

12. Goodfellow Ia, Bengio Y., Courville A. Deep Learning. Per. s ang. A.A. Snastina. М.: DMK Press; 2017. 652 p. (In Russ.)

13. Chio C., Freeman D. Machine Learning and Security. Per. s ang. A.A. Snastina. М.: DMK Press; 2020. 388 p. (In Russ.)

14. Kasatkina T.I., Dushkin A.V., Pavlov V.A., Shatovkin R.R. Algorithm for predicting the evolution of series of dynamics of complex systems in solving information problems. = IOP Conf. Series: Journal of Physics: Conf. Series. 2018;973(012035):1-13.

15. Belyavsky G.I., Lila V.B., Puchkov E.V. Algoritm I programmnaya realizaciya gibridnogo metoda obucheniya yskusstvennikch neironnikch setei. Programmnyye produkty i sistemy = Software products and systems. 2012;4:96-100. (In Russ.)

16. Pastukhov A.A., Prokofiev A.A. Primenenie algoritmov klasterizacii k formirovaniyu predstavitelskoi viborki dlya obycheniya mnogosloinogo perceptrona. Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo universiteta. Fiziko-matematicheskiye nauki = Scientific and Technical Bulletin of the St. Petersburg State University. Physical and mathematical sciences. 2017;10(2):58-68. (In Russ.)

Kasatkina Tatiana Igorevna
PhD in Physics and Mathematics, associate professor

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: mathematical model, neural network, educational discipline, educational organization, graph, sigmoidal function, algorithm

For citation: Kasatkina T.I. Mathematical modeling of the system for assessing students’ assimilation level of the university educational portal material using neural network technology. Modeling, Optimization and Information Technology. 2021;9(4). URL: https://moitvivt.ru/ru/journal/pdf?id=952 DOI: 10.26102/2310-6018/2021.35.4.029 (In Russ).

424

Full text in PDF

Received 21.03.2021

Revised 18.12.2021

Accepted 30.12.2022

Published 31.12.2021