Моделирование энергетических переходов в напряженно-деформированной геологической среде для оценки сейсмических рисков (часть 1)
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Modeling of energy transition in a stress-strain geological environment for seismic risk assessment (Part 1)

idMinaev V.A. idFaddeev A.O. idStepanov R.O.

UDC 550.34.06
DOI: 10.26102/2310-6018/2022.36.1.007

  • Abstract
  • List of references
  • About authors

The article considers the model for solving the problem of seismic risk quantitative correlation, calculated on the basis of modeling, with seismic impacts regulated in the Seismic building design code. The paper is the first part in a series of scientific publications on the subject. For the first time, it substantiates the criteria for selecting test territories, describes the methodology for verifying the adequacy of seismic risk assessment models, characterizes a probabilistic model of energy transitions in a stress-strain geological environment, and presents an approach to evaluating model parameters through the potential energy transformation indicators of the stress-strain geological environment. The content of the other two parts of the series is indicated. Armenia and neighboring states meet the criteria for choosing a region for practical testing of the model: high seismicity, the necessary information base and proven adequacy of the seismic risk model application at all deep levels of the earthquake epicenter locations. The method of the adequacy verification of the seismic risk assessment mathematical model, using the Student's criterion, is examined in detail. It is shown that when estimating the parameters of transitions between states of the model, described by the Kolmogorov equations, it is important to take into account both the influence of regional fields (anomalous gravitational field) and local fields (modern tectonic movements). Thus, a rationale is provided for employing two deterministic models – regional and local - for practical evaluation of stresses and displacements in the geological environment.

1. Minaev V.A., Faddeev A.O., Abramova A.V. Fault-nodal tectonic model for assessing geodynamic stability of territorial systems Problemy upravleniya riskami v tekhnosfere = Problems of risk management in the technosphere. 2014;1(29):90–99. (In Russ.)

2. Minaev V.A., Faddeev A.O., Nevdakh T.M., Akhmetshin T.R. Digital model of geodynamic processes in the Earth's lithosphere Vestnik Rossijskogo novogo universiteta. Seriya: Slozhnye sistemy: modeli, analiz i upravlenie. Vypusk 3. = Bulletin of the Russian New University. Series: Complex Systems: models, analysis and management. Issue 3. 2018;3:9–15. (In Russ.)

3. Minaev V.A., Faddeev A.O., Akhmetshin T.R., Nevdakh T.M. Mathematical models of geodynamic risk assessment in the study of lithospheric processes. Tekhnologii tekhnosfernoj bezopasnosti. Vypusk № 6 = Technosphere safety technologies. Issue No. 6 2018;82:40–47. Available from: http://agps-2006.narod.ru/ttb/2018-6/02-06-18.ttb.pdf (In Russ.)

4. Minaev V.A., Topolsky N.G., Faddeev A.O., Bondar K.M., Mokshantsev A.V. Geodynamic risks and construction. Mathematical models. Moscow: Academy of GPS of the Ministry of Emergency Situations of Russia; 2017. 208 p. (In Russ.)

5. Minaev V.A., Faddeev A.O., Kuzmenko N.A. 3-D modeling of dangerous endogenous geological processes migration. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta = Bulletin of the Ryazan State Radio Engineering University. 2016;58:64–74. (In Russ.)

6. Minaev V.A., Faddeev A.O., Kuzmenko N.A. Modeling and assessment of geodynamic risks. Moscow, «RTSoft» – «Kosmoscope»; 2017. 256 p. (In Russ.)

7. Minaev V.A., Faddeev A.O. Assessment of geoecological risks. Modeling the safety of tourist and recreational territories. M.: Finance and Statistics, Publishing house INFRA-Moscow; 2009. 370 p. (In Russ.)

8. Minaev V.A., Faddeev A.O. Safety and recreation: system view on the problem of risks. Trudy II Mezhdunarodnoj nauchno-prakticheskoj konferencii "Turizm i rekreaciya: fundamental'nye i prikladnye issledovaniya" = Proceedings of the II International Scientific and Practical Conference "Tourism and Recreation: fundamental and applied research". M.: Publishing House "Tourist"; 2007. P. 329–334. (In Russ.)

9. Minaev V.A., Faddeev A.O., Abramova A.V., Pavlova S.A. Generalized probabilistic model for assessing geodynamic stability of territories. Tekhnologii tekhnosfernoj bezopasnosti: Internet-zhurnal = Technologies of technosphere security: Online journal. 2013;5(51)12. Available from: http://ipb.mos.ru/ttb/2013-5. (In Russ.)

10. Ananyin I.V., Faddeev A.O. Numerical modeling of the stress state of tectonic disturbances in the Earth's crust of the Central part of the East European Platform (on the example of the Moscow-Ryazan-Saratov avlakogen). Proceedings of the International conference "Geodynamics and geoecology". Arkhangelsk: Institute of Environmental Problems of the North, Ural Branch of the Russian Academy of Sciences$ 1999. P. 11–14. (In Russ.)

11. Clarification of the initial seismicity and seismic microzoning of transport structures sections / Methodological guide. Ministry of Construction and Housing and Communal Services of the Russian Federation. Federal Autonomous Institution "Federal Center for Standardization, Standardization and Conformity Assessment in Construction". Moscow; 2018. 215 p. (In Russ.)

12. Operational Seismological catalog of the Geophysical Service of the Russian Academy of Sciences, Obninsk. Source: World Data Center for Solid Earth Physics. Moscow. Available from: http://www.wdcb.ru. (In Russ.)

13. Seismological catalogues of the Geophysical Service of the Russian Academy of Sciences, Obninsk. Source: World Data Center for Solid Earth Physics. Moscow. Available from: www.wdcb.ru (In Russ.)

14. Kuzmin Yu.O., Zhukov V.S. Modern geodynamics and variations of physical properties of rocks. Moscow, Gornaya kniga, 2012. 264 p. (In Russ.)

15. Sobolev G.A. Fundamentals of earthquake prediction. Moscow, Nauka; 1993. 310 p. (In Russ.)

16. Terkot D., Schubert J. Geodynamics. Moscow, Mir; 1985. In 2 volumes. 730 p. (In Russ).

17. Mathematical modeling. Edited by A.N. Tikhonov, V.A. Sadovnichy and others. Moscow, Fizmatlit; 2005. 316 p. (In Russ.)

18. Myshkis A.D. Elements of the mathematical models theory. Moscow, KomKniga; 2007. 192 p. (In Russ.)

19. Gmurman V.E. Probability theory and mathematical statistics: Textbook for applied bachelor's degree. 12 ed. Moscow: Yurayt Publishing House; 2015. 479 p. (In Russ.)

20. Spirin N.A., Lavrov V.V., Zainullin L.A. and others. Methods of planning and processing the results of an engineering experiment: A textbook. Under the general editorship of N.A. Spirin. Yekaterinburg: WINC Limited Liability Company "UINC"; 2015. 290 p. (In Russ.)

21. Vikulin A.V. Physics of the Earth and Geodynamics. Publishing House of the Kamchatka State University named after Vitus Bering; 2008. 463 p. (In Russ.)

22. Vasiliev V.I., Sidnyaev N.I., Fedotov A.A., Vasilyeva M.V., Stepanov S.P. Hierarchical mathematical models and effective computational algorithms for solving complex problems of the cryolithozone: Textbook. Edited by V.I. Vasiliev, N.I. Sidnyaev. Moscow, COURSE; 2021. 576 p. (In Russ.)

Minaev Vladimir Aleksandrovich
Doctor of Technical Science, Professor

ORCID |

V. Ya. Kikot Moscow University of the Internal Affairs Ministry of Russia
Bauman Moscow State Technical University

Moscow, Russian Federation

Faddeev Aleksandr Olegovich
Doctor of Technical Science, associate professor

ORCID |

Bauman Moscow State Technical University

Moscow, Russian Federation

Stepanov Rodion Olegovich
Candidate of Engineering Sciences
Email: stepanovr@bmstu.ru

Scopus | ORCID |

Directorate for Arctic Programs Bauman Moscow State Technical University
Research Institute of Radio Electronics and Laser Technology Bauman Moscow State Technical University

Moscow, Russian Federation

Keywords: model, seismic risk, stress-deformed geological environment, test territory, criterion, regional and local geophysical fields

For citation: Minaev V.A. Faddeev A.O. Stepanov R.O. Modeling of energy transition in a stress-strain geological environment for seismic risk assessment (Part 1). Modeling, Optimization and Information Technology. 2022;10(1). Available from: https://moitvivt.ru/ru/journal/pdf?id=1061 DOI: 10.26102/2310-6018/2022.36.1.007 (In Russ).

345

Full text in PDF

Received 11.10.2021

Revised 13.01.2022

Accepted 18.02.2022

Published 27.02.2022