Управление массообменными процессами при сорбционной очистке газовых выбросов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Control of mass transfer processes in sorption gas emissions cleaning

idMerentsov N.A. idPersidskiy A.V. idGolovanchikov A.B.

UDC 681.518
DOI: 10.26102/2310-6018/2022.37.2.023

  • Abstract
  • List of references
  • About authors

Equipping absorption devices for cleaning gas emissions with automatic control systems is the most effective and promising way to improve the quality of their operation and increase energy efficiency. However, the systems for automatic control of mass transfer apparatuses, known today, do not have the ability to maintain an extremely unstable hydrodynamic emulsification mode while it has the highest efficiency. The object of industrial gas emission sorption purification control system is a mass transfer apparatus where the gas phase flow being purified contacts with a liquid absorbent. The purpose of the control is to intensify the processes of mass transfer during absorption refining of gas emissions under disturbing influences and program recognition of the desired hydrodynamic modes of the mass transfer apparatus operation according to the actual values measured during the process of technological characteristics. The constructed mathematical model is based on the approximation of the points of adjacent filtration curves on which the range of the hydrodynamic emulsification mode is isolated. An indicator of the desired emulsification mode emergence is the appearance of "bursts" in the value of the turbulence index as the flow rate of the gas phase increases. When using the proposed mathematical model in real ACS, the coefficients determined during experimental studies can be identified automatically and used subsequently in the calculation of control actions. Identification of the mathematical control model on a real mass transfer apparatus is advised to be carried out automatically during auto-calibration of technological parameters.

1. Timonin A.S., Bozhko G.V., Borshchev V.Ya., Gusev Yu.I. Equipment for oil and gas processing, chemical and petrochemical industries. Book 2. Under the general editor A.S. Timonin. M., Infra-Engineering; 2019.

2. Sokol B.A. et al. Packing of mass-exchange columns. Ed. D.A. Baranov. M.: Infohim; 2009.

3. Kagan A.M. et al.Contact packing of industrial heat and mass exchange apparatuses. Under ed. Laptev. Kazan: Fatherland; 2013.

4. Golovanchikov A.B., Cherikova K.V., Prokhorenko N.A. Mathematical modeling of the cap plate in rectification processes. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2021;9(1).

5. Nosyrev M.A., Komlyashev R.B., Ilyina S.I., Kabanov O.V. Purification of gas emissions from sulfur dioxide at industrial enterprises. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2018;22(8):24–27.

6. Dmitriev A.V., Madyshev I.N., Dmitrieva O.S., Nikolaev A.N. Studies of liquid and gas dispersion in contact devices with an increased range of stable operation. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2017;21(3):12–15.

7. Nosyrev M.A., Komlyashev RB, Ilyina S.I. Calculation of hydraulic resistance and retention capacity in absorbers with a pseudo-liquefied packing. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2013;7:37–41.

8. Golovanchikov A.B., Prokhorenko N.A., Fomenkov S.A. Development and numerical modeling of the column design for gas-liquid contact. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2020;8(4).

9. Madyshev I., Dmitrieva O., Dmitriev A. Prospects for the use of jet-bubbling contact devices to improve the energy efficiency of mass exchangers. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2015;19(7):36–39.

10. Dmitriev A.V., Makusheva O.S., Kalimullin I.R., Nikolaev A.N. Vorchrev apparatus for cleaning large-tonnage gas emissions of industrial enterprises. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2012;(1):4–7.

11. Golovanchikov A.B., Merentsov N.A., Kachanov A.V. Modeling the absorption process in a packed column operating in the emulsification mode. Ecology and industry of Russia. 2021;25(3):24–29.

12. Merentsov N.A., Golovanchikov A.B., Persian A.V., Topilin M.V. Modeling of control processes in oil and gas processing mass exchange equipment: monograph. VolgaGTU. Volgograd; 2021. 212 p.

13. Silaev A.A., Silaeva E.Yu., Shevchuk V.P. Patent No. 2693785 of the Russian Federation C1, IPC B01D53/14 G05D27/00. Method of automatic control of absorption process. 2019.

14. Boldyrev I.A., Shevchuk V.P. Patent No. 2393912 RF C1, IPC B01D53/14. Method for control of absorption process. 2009.

15. Golovanchikov A.B., Doan M.K., Petrukhin A.V., Merentsov N.A. Comparison of the accuracy of approximation of experimental data by least relative squares with least squares. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2020;8(1).

16. Merentsov N.A., Balashov V.A., Golovanchikov A.B., Topilin M.V., Persian A.V. Structure of the filtration curve and methods of its approximation. Part 3. Equations for approximating the filtration curve. Bulletin of Tambov State Technical University (Bulletin of TSTU). 2021;27(3):401–414.

17. Golovanchikov A.B., Doan M.K., Petrukhin A.V., Merentsov N.A. Comparison of the accuracy of approximation of experimental data by least relative squares with least squares. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2020;8(1).

18. Merentsov N.A., Golovanchikov A.B., Balashov V.A. Experimental study of the characteristics of heat and mass transfer packed devices: textbook. allowance. VolgGTU. Volgograd; 2018. 94 p.

Merentsov Nickolay Anatolievich
Candidate Of Technical Sciences, Associate Professor

ORCID |

Volgograd State Technical University

Volgograd, Russian Federation

Persidskiy Alexander Vladimirovich

ORCID |

Federal scientific and production centre "Titan – Barricady"

Volgograd, Russian Federation

Golovanchikov Alexander Borisovich
Doctor Of Technical Sciences, Professor

ORCID |

Volgograd State Technical University

Volgograd, Russian Federation

Keywords: mathematical model, control, automation, mass transfer, absorption, gas purification, hydrodynamics, turbulence index, emulsification mode

For citation: Merentsov N.A. Persidskiy A.V. Golovanchikov A.B. Control of mass transfer processes in sorption gas emissions cleaning. Modeling, Optimization and Information Technology. 2022;10(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=1179 DOI: 10.26102/2310-6018/2022.37.2.023 (In Russ).

248

Full text in PDF

Received 13.05.2022

Revised 10.06.2022

Accepted 28.06.2022

Published 29.06.2022