Автоматизация выращивания агрокультур в стационарном компактном тепличном комплексе с контролируемым микроклиматом на базе гидропонной системы
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Automation of growing crops in a stationary compact greenhouse complex with a controlled microclimate based on a hydroponic system

idLevonevskiy D.K. idRyabinov A.V. idZhukova N.A. idKovalevsky V.E.

UDC 004.94
DOI: 10.26102/2310-6018/2023.40.1.029

  • Abstract
  • List of references
  • About authors

Automation processes are currently being implemented in agriculture. Solutions in the field of agricultural automation and smart agriculture can reduce time expenditure and cost of crop production and lessen the impact of the human factor, i.e. mistakes that can lead to the death of crops and cause significant damage to the enterprise. This article deals with the issue of automation and modeling of technological processes of growing crops in stationary compact greenhouse complexes with a controlled microclimate based on a hydroponic system. A diagram and a model of the behavior of such complex is presented in the article. The complex helps to perform cyclic cultivation by periodic irrigation with a nutrient solution cleaned with a biofilter. To model the behavior of a mini-greenhouse, UML state diagrams were used. The problem of evaluating the performance of such modules and recording disruptions of cultivation process drawing on the collected data was considered. Machine learning methods were employed to estimate and predict climatic parameters in the greenhouse. The application of these methods allows performing proactive control of technological processes in the greenhouse, ensure strict adherence to production regulations and rational use of resources. Further research involves creating a method for proactive control of compliance with technological processes based on the formal models of these processes.

1. Vasconez J.P., Kantor G.A., Auat Cheein F.A. Human-robot interaction in agriculture: A survey and current challenges. Biosystems Engineering. 2019;179:35–48. DOI: 10.1016/j.biosystemseng.2018.12.005.

2. Azmi H.N., Hajjaj S.S.H., Gsangaya K.R., Sultan M., Mail M.F., Hua L.S. Design and fabrication of an agricultural robot for crop seeding. Materials Today: Proceedings. 2021. DOI: 10.1016/j.matpr.2021.03.191.

3. Gzar D.A., Mahmood A.M., Al-Adilee M.K.A. Recent trends of smart agricultural systems based on Internet of Things technology: A survey. Computers and Electrical Engineering. 2022;104A. DOI: https://doi.org/10.1016/j.compeleceng.2022.108453.

4. Krestovnikov K., Korshunov D., Erashov A., Rogozin A. Scalable Architecture of Distributed Control System for Industrial Greenhouse Complexes. Data Science and Intelligent Systems. CoMeSySo 2021. Lecture Notes in Networks and Systems. 2021;231:127-132. DOI: 10.1007/978-3-030-90321-3_12.

5. Kachanova O.A., Levonevskii D.K. Software architecture of an automated greenhouse complex based on cloud technologies. Programmnaya inzheneriya = Software Engineering. 2021;12(9):475–489. DOI: 10.17587/prin.12.475-489. (In Russ.).

6. Raj J.S., Ananthi J.V. Automation using IoT in greenhouse environment. Journal of Information Technology and Digital World. 2019;1(01):38–47. DOI: 10.36548/jitdw.2019.1.005.

7. Shamshiri R., Kalantari F., Ting K.C., Thorp K., Hameed I.A., Weltzien C., Ahmad D., Shad Z. Advances in greenhouse automation and controlled environment agriculture: a transition to plant factories and urban agriculture. International Journal of Agricultural and Biological Engineering. 2018;11(1):1–22. DOI: 10.25165/j.ijabe.20181101.3210.

8. Shah N.P., Bhatt P. Greenhouse automation and monitoring system design and implementation. International Journal of Advanced Research in Computer Science. 2017;8(9):468–471. DOI: 10.26483/ijarcs.v8i9.4981

9. Cosman S.I., Bilatiu C.A., Marţiş C.S. Development of an Automated System to Monitor and Control a Greenhouse. 2019 15th International Conference on Engineering of Modern Electric Systems (EMES). 2019:1–4. DOI: 10.1109/EMES.2019.8795186.

10. Ko C.C., Mon S.S. Microcontroller based greenhouse automatic control system. International Journal of Science, Engineering and Technology Research. 2014;3(5):0865–70.

11. Gonzalez Perez I., Calderon Godoy A.J. Greenhouse automation with programmable controller and decentralized periphery via field bus. 2009 IEEE International Conference on Mechatronics. 2009:1–6. DOI: 10.1109/ICMECH.2009.4957160.

12. Sivagami A., Hareeshvare U., Maheshwar S., Venkatachalapathy V.S.K. Automated irrigation system for greenhouse monitoring. Journal of The Institution of Engineers (India). 2018;99(2):183–191. DOI: 10.1007/s40030-018-0264-0.

13. Sammari S. Vertical farming. Cubes which are used for advanced vertical farming. Available from: https://www.kaggle.com/datasets/midouazerty/work-for-parmavir (accessed on 15.10.2022).

14. Kotthoff L., Thornton C., Hoos H.H., Hutter F., Leyton-Brown K. Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA. Automated Machine Learning. The Springer Series on Challenges in Machine Learning. 2019:81–95. DOI: 10.1007/978-3-030-05318-5_4.

Levonevskiy Dmitriy Konstantinovich
Candidate of Technical Sciences
Email: levonevskij.d@iias.spb.su

Scopus | ORCID |

Saint Petersburg Federal Research Center of the Russian Academy of Sciences

Saint Petersburg, Russian Federation

Ryabinov Artem Valerievich

Email: ryabinov.a@iias.spb.su

ORCID |

Saint Petersburg Federal Research Center of the Russian Academy of Sciences

Saint Petersburg, Russian Federation

Zhukova Nataliya Aleksandrovna
Doctor of Technical Sciences Associate Professor

ORCID |

Saint Petersburg Federal Research Center of the Russian Academy of Sciences

Saint Petersburg, Russian Federation

Kovalevsky Vladislav Eduardovich

ORCID |

Amilen training center

Saint Petersburg, Russian Federation

Keywords: smart agriculture, cyber-physical systems, smart greenhouse, behavior modeling, automated process control systems

For citation: Levonevskiy D.K. Ryabinov A.V. Zhukova N.A. Kovalevsky V.E. Automation of growing crops in a stationary compact greenhouse complex with a controlled microclimate based on a hydroponic system. Modeling, Optimization and Information Technology. 2023;11(1). Available from: https://moitvivt.ru/ru/journal/pdf?id=1280 DOI: 10.26102/2310-6018/2023.40.1.029 (In Russ).

265

Full text in PDF

Received 30.11.2022

Revised 09.02.2023

Accepted 20.03.2023

Published 22.03.2023