Анализ состояния телекоммуникационных сетей с использованием графов знаний и управляемого автоматического машинного обучения
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Analysis of telecommunication networks state using knowledge graphs and controlled automatic machine learning

idKulikov I.A. idZhukova N.A. idTianxing M.

UDC 004.855.6
DOI: 10.26102/2310-6018/2023.41.2.005

  • Abstract
  • List of references
  • About authors

Nowadays, knowledge graphs are used as a model of telecommunication networks and for storing data on their state. Knowledge graphs make it possible to combine within one model many particular models of information systems used by operators, which allow joint analysis of data from various sources and, as a result, increase the efficiency of solving network management tasks. Knowledge graph helps to solve complex problems. Filling the knowledge graph requires processing large amounts of raw data. For their processing, it is necessary to use machine learning algorithms, which is difficult when building such models due to the fact that the configurations of modern networks change over time, which requires frequent reconfiguration of machine learning algorithms. In addition, automated machine learning algorithms have a high computational complexity. The purpose of the research is to develop an approach that makes it possible to employ automated machine learning (AutoML) to analyze live data coming from the network by means of metamining capabilities to control the choice of machine learning algorithms and the selection of hyperparameters. The method of determining the state of a telecommunications network using both managed machine learning and metamining, followed by building a network model in the form of a knowledge graph, was utilized. An approach has been developed to provide controlled machine learning when building models of telecommunication networks in the form of a knowledge graph, which has a reduced computational complexity by decreasing the number of candidate algorithms supplied to the AutoML input. The statement and solution of the problem of classifying the state of the vehicle according to the data coming from the network are given; a description of the monitoring system based on the use of the proposed approach is presented. The application of the approach is illustrated by the example of solving the task of determining the state of cable TV operator's network.

1. Krinkin K., Vodyaho A., Kulikov I., Zhukova N. Models of Telecommunications Network Monitoring Based on Knowledge Graphs. 9th Mediterranean Conference on Embedded Computing (MECO). 2020;1–7. DOI: 10.1109/MECO49872.2020.9134148.

2. Krinkin K., Kulikov I., Vodyaho A., Zhukova N. Architecture of a Telecommunications Network Monitoring System Based on a Knowledge Graph. 26th Conference of Open Innovations Association (FRUCT). 2020;231–239. DOI: 10.23919/FRUCT48808.2020.9087429.

3. Wählisch M. Modeling the network topology. In: Wehrle K., Güneş M., Gross J. (eds) Modeling and Tools for Network Simulation. Berlin, Springer; 2010. 565 p. DOI: 10.1007/978-3-642-12331-3_22.

4. Lallie H.S., Debattista K., Bal J. A review of attack graph and attack tree visual syntax in cyber security. Computer Science Review. 2020;35. DOI: 10.1016/j.cosrev.2019.100219.

5. Barik M., Sengupta A., Mazumdar C. Attack graph generation and analysis techniques. Defence Science Journal. 2016;66(6):559–567. DOI: 10.14429/dsj.66.10795.

6. Ou X., Singhal A. Attack graph techniques. In: Quantitative Security Risk Assessment of Enterprise Networks. SpringerBriefs in Computer Science. New York, Springer; 2012. 41 p. DOI: 10.1007/978-1-4614-1860-3_2.

7. Sandhu R. A perspective on graphs and access control models. Graph Transformations, ICGT 2004. Lecture Notes in Computer Science. 2004;3256. DOI: 10.1007/978-3-540-30203-2_2.

8. Lawall A., Schaller T., Reichelt D. Resource management and authorization for cloud services. Proceedings of the 7th International Conference on Subject-Oriented Business Process Management. ACM. 2015;18:1–8. DOI: 10.1145/2723839.2723864

9. Ionita C., Osborn S. Privilege administration for the Role Graph Model. Research Directions in Data and Applications Security. IFIP – The International Federation for Information Processing. 2003;128. DOI: 10.1007/978-0-387-35697-6_2.

10. Lumertz P.R., Ribeiro L., Duarte L.M. User interfaces metamodel based on graphs Journal of Visual Languages & Computing. 2016;32:1–34. DOI: 10.1016/j.jvlc.2015.10.026.

11. Arrue M., Vigo M., Abascal J. Including heterogeneous web accessibility guidelines in the development process. Engineering Interactive Systems. EHCI 2007. Lecture Notes in Computer Science. 2008;4940. DOI: 10.1007/978-3-540-92698-6_37.

12. Bizer C., Schultz A. The Berlin SPARQL benchmark. Int. J. Semantic Web Inf. Syst. 2009;5(2):1–24. DOI: 10.4018/jswis.2009040101.

13. Manna A., Alkasassbeh M. Detecting network anomalies using machine learning and SNMP-MIB dataset with IP group. 2nd International Conference on new Trends in Computing Sciences (ICTCS). 2019;1–5. DOI: 10.1109/ICTCS.2019.8923043.

14. Hutter F., Kotthoff L., Vanschoren J. (eds) Automated machine learning. The Springer Series on Challenges in Machine Learning. Cham, Springer; 2019. 220 p. DOI: 10.1007/978-3-030-05318-5.

15. Vanschoren J. Meta-Learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds) Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Springer, Cham; 2019. 220 p. DOI: 10.1007/978-3-030-05318-5_2.

16. Wirth R., Hipp J. CRISP-DM: Towards a standard process model for data mining. Proc. of the 4th int. conf. PAKDD. 2000;1:29–39.

17. Thornton C., Hutter F., Hoos H., Leyton-Brown K. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. KDD. 2012. DOI: 10.1145/2487575.2487629.

18. Feurer M., Klein A., Eggensperger K., Springenberg J., Blum M., Hutter F. Auto-sklearn: efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds) Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Cham, Springer; 2019. 220 p. DOI: 10.1007/978-3-030-05318-5_6.

19. LeDell E. H2O AutoML: scalable automatic machine learning. 7th ICML Workshop on Automated Machine Learning. 2020.

20. Hutter, F., Kotthoff, L., Vanschoren, J. (eds) Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Cham, Springer; 2019. DOI: 10.1007/978-3-030-05318-5_2.

21. Wirth R., Hipp J. CRISP-DM: Towards a standard process model for data mining. Proc. of the 4th int. conf. PAKDD. 2000;1:29–39.

22. Krinkin K., Vodyaho A., Kulikov I., Zhukova N. Method of multilevel adaptive synthesis of monitoring object knowledge graphs. Applied Sciences. 2021;11(14):6251. DOI: 10.3390/app11146251.

23. Krinkin K., Vodyaho A. Kulikov I., Zhukova N. Deductive synthesis of networks hierarchical knowledge graphs. International Journal of Embedded and Real-Time Communication Systems (IJERTCS). 2021;12(3):32–48. DOI: 10.4018/IJERTCS.2021070103.

24. van der Ham J.J. A semantic model for complex computer networks: the network description language. Thesis. Citeseer; 2010. 154 p.

25. Qiao X., Li X., Fensel A., Su F.. Applying semantics to Parlay-based services for telecommunication and Internet networks. Open Computer Science. 2011;l(4):406–429. DOI: 10.2478/s13537-011-0029-6.

26. Cleary D., Danev B., O’Donoghue D. Using ontologies to simplify wireless network configuration. FOMI; 2005.

27. Villalonga C., Strohbach M., Snoeck N., Sutterer M., Belaunde M., Kovacs E., Zhdanova A.V., Goix L.W., Droegehorn O. Mobile ontology: Towards a standardized semantic model for the mobile domain. International Conference on Service-Oriented Computing. 2007;248–257. DOI 10.1007/978-3-540-93851-4_25.

28. Barcelos P.P.F., Monteiro M.E., Simoes R. de M., Garcia A.S., Segatto M.E.V. Ootn-an ontology proposal for optical transport networks. IEEE ICUMT. 2009;1–7. DOI: 10.1109/ICUMT.2009.5345459.

29. Uzun A., Kupper A. OpenMobileNetwork: extending the web of data by a dataset for mobile networks and devices. ACM ICSS. 2012;17–24. DOI: 10.1145/2362499.2362503.

30. Zhou Q., Gray A.J.G., McLaughlin S. ToCo: An ontology for representing hybrid telecommunication networks. The Semantic Web. ESWC 2019. Lecture Notes in Computer Science. 2019;11503. DOI: 10.1007/978-3-030-21348-0_33.

31. Wirth R., Hipp J. Crisp-dm: Towards a standard process model for data mining. Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. 2000;1:29–39.

32. Panov P., Soldatova L., Dzeroski S. Ontodm-kdd: ontology for representing the knowledge discovery process. Int. Conf. on Discovery Science. 2013;126–140. DOI: 10.1007/978-3-642-40897-7_9.

33. Alkasassbeh M. AN-SNMP Dataset. 2016. DOI: 10.13140/RG.2.2.26384.30721.

34. Kulikov I., Vodyaho A., Stankova E., Zhukova N. Ontology for knowledge graphs of telecommunication network Monitoring systems. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science. 2021;12956. DOI: 10.1007/978-3-030-87010-2_32.

Kulikov Igor Aleksandrovich

ORCID |

Saint-Petersburg Electrotechnical University “LETI”

Saint Petersburg, The Russian Federation

Zhukova Natalia Aleksandrovna
Candidate of Technical Sciences

ORCID |

Saint Petersburg Federal Research Centre of the Russian Academy of Sciences (SPCRAS)

Saint Petersburg, The Russian Federation

Tianxing Man
PhD, Tech.

ORCID |

School of Artificial Intelligence at Jilin University

Changchun City, The People's Republic of Chine

Keywords: knowledge graph, autoML, telecommunication network, meta-learning, meta-mining

For citation: Kulikov I.A. Zhukova N.A. Tianxing M. Analysis of telecommunication networks state using knowledge graphs and controlled automatic machine learning. Modeling, Optimization and Information Technology. 2023;11(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=1319 DOI: 10.26102/2310-6018/2023.41.2.005 (In Russ).

213

Full text in PDF

Received 05.02.2023

Revised 18.03.2023

Accepted 14.04.2023

Published 24.04.2023