Математическое моделирование течения теплоносителя в сопле Вентури при высоких параметрах среды методом конечных элементов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mathematical modeling of the coolant flow in a Venturi nozzle at high medium parameters by means of the finite element method

idYaurov S.V. idDanilov A.D. idGusev K.Y. Skorodumov D.G.  

UDC 51-74
DOI: 10.26102/2310-6018/2023.42.3.019

  • Abstract
  • List of references
  • About authors

Venturi nozzles have found quite wide application in various industries. The paper considers the design and operating modes of the basic leak limiter made in the form of an asymmetric Venturi nozzle which is one of the technological systems of the first circuit of the Novovoronezh NPP-2 power unit No. 1 (NPP-2006 project). Methods for modeling in the ANSYS CFX software and hardware complex using the finite element method and operating modes of the device to assess its effectiveness in emergency mode and normal operation mode are presented. The results of thermohydraulic calculations of the stationary operation mode of the leak limiter insert are given, comparison with the results according to basic calculation methods is performed. The complexity of the task being performed lies in the fact that the leak limiter is installed on the pipeline where the coolant has a temperature significantly higher than the saturation temperature consistent with the pressure of the medium into which the leakage occurs when the pipeline breaks. The section of the cylindrical neck of the minimum cross-section provides boiling of the liquid within its length, which leads to partial self-locking of the leaking coolant flow because of enabling a critical flow mode; in essence, this refers to the solution to the problem of a two-phase medium flow.

1. Bukrinsky A.M., Maltsev B.K., Khlestkin D.A. A method for limiting the free flow of a medium flow from a closed system. Certificate of authorship 306378; 1971(19). (In Russ.).

2. Khlestkin D.A., Korshunov A.S., Kanishchev V.P. Determination of water flow rates of high parameters when flowing into the atmosphere through cylindrical channels. Izv. of the USSR Academy of Sciences. Energy and Transport. 1978;5:126–134. (In Russ.).

3. Maltsev B.K., Khlestkin D.A., Keller. Experimental study of the outflow of saturated and underheated water at high pressures. Teploenergetika. 1972;6:61–63. (In Russ.).

4. Idelchik I.E. Handbook of hydraulic resistances. Moscow, "Mechanical Engineering"; 1992. 672 p. (In Russ.).

5. RTM 274.03. Calculation of critical costs in case of emergency depressurization of circulating circuits of nuclear power plants with a water coolant. Moscow, NIKIET –VTI; 2003. 67 p. (In Russ.).

6. Tikhonenko L.K., Kevorkov L.R., Lutovinov S.Z. Critical costs of hot water when flowing out of pipes. Teploenergetika. 1979;5:32–36. (In Russ.).

7. Khlestkin D.A., Maltsev B.K., Kanishchev V.P. Limiters of coolant flow during pipeline ruptures. Atomnaya energiya. 1986;61(5):377–378. (In Russ.).

8. Deich M.E., Filippov G.A. Gas dynamics of two-phase media. Moscow, Energoizdat; 1981. 470 p. (In Russ.).

9. GOST 8.563.1-97 GSI. Measurement of the flow and quantity of liquids and gases by the method of variable pressure drop. Diaphragms, ISA-1932 nozzles and Venturi pipes installed in filled pipelines of circular cross-section. Technical conditions. Standartinform, 2005. 64 p. (In Russ.).

10. Fisenko V.V. Critical two-phase flows. Moscow, Atomizdat; 1978. 159 p. (In Russ.).

11. Gabaraev B.A., Karasev E.K., Lutovinov S.Z. Computational and experimental study of critical flow rates in nozzles. In: Thermophysics, Karlovy Vary. 1982;1:183-196. (In Russ.).

12. Gorshkov A.S., Goncharov V.K. The occurrence of cavitation in a liquid. Proceedings of the Acoustic Institute. 1969;6:30-38. (In Russ.).

Yaurov Sergey Vasilievich

Email: yaurovsv@gmail.com

Scopus | ORCID | eLibrary |

Voronezh State Technical University

Voronezh, the Russian Federation

Danilov Aleksandr Dmitrievich
Doctor of Technical Sciences Professor

Scopus | ORCID | eLibrary |

Voronezh State Technical University

Voronezh, the Russian Federation

Gusev Konstantin Yurievich
Candidate of Technical Sciences Associate Professor
Email: gussev_konstantin@mail.ru

Scopus | ORCID | eLibrary |

Voronezh State Technical University

Voronezh, the Russian Federation

Skorodumov Daniil Gennadievich

Email: skorodumovdg@gmail.com

the Branch of the Rosenergoatom, JSC Novovoronezh Nuclear Power Plant

Novovoronezh, the Russian Federation

Keywords: leak limiter insert, venturi nozzle, modernization, purge, pipeline rupture, coolant leak, finite element method

For citation: Yaurov S.V. Danilov A.D. Gusev K.Y. Skorodumov D.G. Mathematical modeling of the coolant flow in a Venturi nozzle at high medium parameters by means of the finite element method. Modeling, Optimization and Information Technology. 2023;11(3). Available from: https://moitvivt.ru/ru/journal/pdf?id=1372 DOI: 10.26102/2310-6018/2023.42.3.019 (In Russ).


Full text in PDF

Received 05.05.2023

Revised 21.07.2023

Accepted 14.09.2023

Published 14.09.2023