Нейронечеткие сети для систем дистанционного мониторинга амбулаторных пациентов с заболеваниями органов дыхания
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Neural fuzzy networks for remote monitoring systems for outpatients with respiratory diseases

idButusov A.V. idAlawsi H.A. idKarachevtsev R.A. idFilist S.A.

UDC 004.891.3:004.932.2
DOI: 10.26102/2310-6018/2023.42.3.016

  • Abstract
  • List of references
  • About authors

The article proposes a decisive module for monitoring the functional state of the respiratory system, which provides intellectual support in making decisions by medical personnel regarding the hospitalization of a patient. To control the severity of community-acquired pneumonia, a hybrid multi-agent classifier has been developed based on Internet technologies with a structure that includes segments of risk factors associated with “its own” fuzzy inference system. A metaclassifier has been designed to aggregate the solutions of these systems, which allows monitoring the functional state of the patient breathing system in remote interactive mode. Based on the Mamdani-Larsen algorithm, a five-layer fuzzy network has been developed for classifying the severity of community-acquired pneumonia according to the input vector, which allows estimating the severity of community-acquired pneumonia on a 0–1 scale according to the segment of risk factors used in traditional pneumonia risk scales. A neuro-fuzzy classifier of community-acquired pneumonia severity based on the CRB-65 pneumonia risk scale was synthesized. The base of fuzzy decision rules of the fuzzy inference system is formed and the membership functions for input and output variables in the selected segment of risk factors are determined. The neuro-fuzzy model of a hybrid classifier of the severity of community-acquired pneumonia was tested using an experimental group of 200 patients with community-acquired pneumonia of varying severity. The classifier model on the control sample demonstrated a diagnostic sensitivity of 90 % and diagnostic specificity of 86 %. The results of the obtained risk model for community-acquired pneumonia were compared with the results of expert evaluation and the results obtained on known regression models. The quality indicators of the classification of the synthesized neuro-fuzzy classifier make it possible to recommend it for telecommunication systems for remote monitoring of community-acquired pneumonia severity.

1. Gelman V.Ya. Changing the role of the patient in the treatment process with the development of home telemedicine. Meditsina = Medicine. 2022;1:41–49. URL: https://www.fsmj.ru/download/37/05.pdf. DOI: 10.29234/2308-9113-2022-10-1-41-49 (accessed on 15.06.2023). (In Russ.).

2. Gelman V.Ya., Dokhov M.A. Problems of development of health monitoring at residential settings. Meditsina = Medicine. 2020;2:50–60. URL: https://www.fsmj.ru/download/30/04.pdf. DOI: 10.29234/2308-9113-2020-8-2-50-60 (accessed on 20.06.2023). (In Russ.).

3. Sadykova E.V., Yuldashev Z.M. Remote health state monitoring and emergency medical aid system for the patients with chronic diseases. Biotekhnosfera. 2017;301(1):2–7. (In Russ.).

4. Yuldashev Z.M., Anisimov A.A. A system for remote-controlled intelligent monitoring of the health status in humans. Meditsinskaya tekhnika. 2017;301(1):45–48. URL: http://www.mtjournal.ru/upload/iblock/789/789eff3e690280d42b3e800758053a65.pdf (accessed on 20.05.2023). (In Russ.).

5. Sushchevich D.S., Rudchenko I.V., Kachnov V.A. Home telemedicine in outpatient monitoring and treatment of patients with chronic non-communicable diseases. In: Topical Issues of Modern Science: a Collection of Scientific Papers. Ufa: OOO Dendra; 2019; p. 119–126. (In Russ.).

6. Kurochkin A.G., Zhilin V.V., Surzhikova S.A., Filist S.A. Use of hybrid neural network models for multi-agent systems of classification in heterogeneous space of informative signs. Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii = Caspian Journal: Management and High Technologies. 2015;31(3):85–95. URL: https://hi-tech.asu.edu.ru/files/3(31)/85-95.pdf (accessed on 15.05.2023). (In Russ.).

7. Kurochkin A.G., Protasova V.V., Filist S.A., Shutkin A.N. Neural network model for meta-analysis of medical and ecological data. Neirokomp'yutery. Razrabotka, primenenie = Neurocomputers. Development, application. 2015;6:42–48. (In Russ.).

8. Petrova T.V., Kuz'min A.A., Savinov D.Yu., Serebrovskii V.V. Distributed autonomous intelligent agents for monitoring and meta-analysis of the effectiveness of managing living systems. Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii = Caspian Journal: Management and High Technologies. 2017;40(4):61–73. URL: https://hi-tech.asu.edu.ru/files/4(40)/61-73.pdf (accessed on 18.05.2023). (In Russ.).

9. Piette J.D., List J., Rana G.K., Townsend W., Striplin D., Heisler M. Mobile health devices as tools for worldwide cardiovascular risk reduction and disease management. Circulation. 2015;132(21):2012–2027. DOI: 10.1161/CIRCULATIONAHA.114.008723 (accessed on 28.04.2023).

10. Vegesna A., Tran M., Angelaccio M., Arcona S. Remote patient monitoring via non-invasive digital technologies: a systematic review. TELEMEDICINE and e-HEALTH. 2017;23(1):3–17. URL: https://www.liebertpub.com/doi/pdf/10.1089/tmj.2016.0051. DOI: 10.1089/tmj.2016.0051 (accessed on 02.05.2023).

11. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S., Tyurin I.E., Rachina S.A. Practical guidelines for the prevention, diagnosis and treatment of community acquired pneumonia in adults (Physician’s Manual). Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya = Clinical Microbiology and Antimicrobial Chemotherapy. 2010;12(3):186–225. URL: https://cmac-journal.ru/publication/2010/3/cmac-2010-t12-n3-p186/cmac-2010-t12-n3-p186.pdf (accessed on 05.05.2023). (In Russ.).

12. Chuchalin A.G., Sinopal'nikov A.I., Kozlov R.S., Avdeev S.N., Tyurin I.E., Rudnov V.A., Rachina S.A., Fesenko O.V. Clinical guidelines on diagnosis, treatment and prevention of severe community-acquired pneumonia in adults. Pul'monologiya = Pulmonologiya. 2014;4:13–48. URL: https://journal.pulmonology.ru/pulm/article/view/437/437 (accessed on 25.05.2023). (In Russ.).

13. Charles P.G., Wolfe R., Whitby M., Fine M.J., Fuller A.J., Stirling R., Wright A.A., Ramirez J.A., Christiansen K.J., Waterer G.W., Pierce R.J., Armstrong J.G., Korman T.M., Holmes P., Obrosky D.S., Peyrani P., Johnson B., Hooy M., the Australian Community-Acquired Pneumonia Study Collaboration, Grayson M.L. SMART-COP: a tool for predicting the need for intensive respiratory or vasopressor support in community-acquired pneumonia. Clinical Infectious Diseases. 2008;47(3):375–384. URL: https://academic.oup.com/cid/article-pdf/47/3/375/896843/47-3-375.pdf. DOI: 10.1086/589754 (accessed on 12.05.2023).

14. Butusov A.V., Kiselev A.V., Petrunina E.V., Safronov R.I., Pesok V.V., Pshenichniy A.E. Algorithms for monitoring the effectiveness of therapeutic and rehabilitation procedures based on clinical blood analysis indicators in the medical decision support system. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika, informatika. Meditsinskoe priborostroenie = Proceedings of the Southwest State University. Series: IT Management, Computer Science, Computer Engineering. Medical Equipment Engineering. 2023;13(1):170–190. URL: https://uprinmatus.elpub.ru/jour/article/view/95/94. DOI: 10.21869/2223-1536-2023-13-1-170-190 (accessed on 12.06.2023). (In Russ.).

15. Ermakov S.A., Bolgov A.A. Risk assessment using a neuro-fuzzy system. Informatsiya i bezopasnost' = Information and security. 2022;25(4):583–592. URL: https://cchgeu.ru/science/nauchnye-izdaniya/nauchnyy-zhurnal-informatsiya-i-bezopasnost/texts_of_articls/2022/vypusk_4/ИиБ%202022%2025%204-12.pdf. DOI: 10.36622/VSTU.2022.25.4.012 (accessed on 17.06.2023). (In Russ.).

16. Fisenko O.V., Sinopal'nikov A.I. Severe community-acquired pneumonia and prognosis assessment scales. Prakticheskaya pul'monologiya = Practical pulmonology. 2014;2:20–26. URL: http://www.atmosphere-ph.ru/modules/Magazines/articles/pulmo/PP_2_2014_20.pdf (accessed on 08.06.2023). (In Russ.).

17. Zhilin V.V., Filist S.A., Khaled Abdul R.S., Shatalova O.V. A method for modeling fuzzy models in the MATLAB package for biomedical applications. Meditsinskaya tekhnika. 2008;2:15–18. (In Russ.).

18. Zhilin V.V., Filist S.A., Al'-Muaalemi V.A. Hybrid method for classifying biosignals based on fuzzy decision logic and neural networks technologies. Biomeditsinskaya radioelektronika = Biomedical Radioelectronics. 2009;5:77–82. (In Russ.).

19. Rogozhkina Yu.A., Mishchenko T.A., Malishevskii L.M., Bogdanova D.S., Benzineb F.T., Nagaitseva A.K. The creation of predictive models for assessing the severity of community-acquired pneumonia. Byulleten' fiziologii i patologii dykhaniya = Bulletin Physiology and Pathology of Respiration. 2019;71:45–50. URL: https://cfpd.elpub.ru/jour/article/view/188/188. DOI: 0.12737/article_5c898b1674b5d2.31350435 (accessed on 27.06.2023). (In Russ.).

20. Sirotko I.I., Samoilov R.G. Mathematical models of predicting course of community-acquired pneumonia in young persons. Sibirskii meditsinskii zhurnal = The Siberian Medical Journal. 2007;22(2):5–10. URL: https://med-click.ru/uploads/files/docs/matematicheskie-modeli-prognozirovaniya-techeniya-vnebolnichnoy-pnevmonii-u-lits-molodogo-vozrasta.pdf (accessed on 30.06.2023). (In Russ.).

Butusov Andrey Vladimirovich

Email: mustang2004@vist.ru

ORCID |

Southwest State University

Kursk, the Russian Federation

Alawsi Hayder Ali Hussain

ORCID |

Southwest State University

Kursk, the Russian Federation

Karachevtsev Ruslan Alekseevich

ORCID |

Southwest State University

Kursk, the Russian Federation

Filist Sergeу Alekseevich
Doctor of Technical Sciences, Professor

ORCID |

Southwest State University

Kursk, the Russian Federation

Keywords: remote monitoring, interior, vein-hospital pneumonia risk scales, multi-agent classification system, neuro-fuzzy classifier, classification quality indicators

For citation: Butusov A.V. Alawsi H.A. Karachevtsev R.A. Filist S.A. Neural fuzzy networks for remote monitoring systems for outpatients with respiratory diseases. Modeling, Optimization and Information Technology. 2023;11(3). Available from: https://moitvivt.ru/ru/journal/pdf?id=1425 DOI: 10.26102/2310-6018/2023.42.3.016 (In Russ).

144

Full text in PDF

Received 18.07.2023

Revised 03.08.2023

Accepted 13.09.2023

Published 13.09.2023