Стойкость метода ассоциативной стегозащиты данных картографических сцен
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Resistance of the method for associative stegosecurity of cartographic scene data

idVershinin I.S.

UDC 004.056.5
DOI: 10.26102/2310-6018/2023.43.4.003

  • Abstract
  • List of references
  • About authors

For further consideration, the article presents earlier introduced concept of a two-dimensional associative masking mechanism used to protect the data of cartographic scenes represented by point objects. The masking mechanism is the basis of associative steganography. In this case, the objects and coordinates of the scene are represented by code words using the alphabet of postal symbols and are masked with stegocontainers developed later. A set of masks is a secret key employed then to recognize a scene represented in a protected form by a set of stegocontainers. The method offence resistance is evaluated from the standpoint of the availability of information about some objects and their coordinates (associations with the terrain map). Two cases of such attacks are considered – the enemy's actual knowledge of the location of an object familiar to them as well as the analysis of the scene for plausibility after recognition using a key. The results of experimental studies are presented, which makes it possible to assert the unconditional or provable (i.e. computational associated with the impossibility of a complete search for keys) resistance of the method. Additionally, a resistance analysis is carried out for the case of excessive masking introduced to increase the noise immunity of stored or transmitted data, when not one, but several sets of masks are used to protect this data.

1. Raikhlin V.A., Vershinin I.S. Modeling of processes of two-dimensional associative masking of distributed point objects of cartography. Nelinejnyj mir = Non-linear world. 2010;8(5):288–296. (In Russ.).

2. Raikhlin V.A., Vershinin I.S., Gibadullin R.F. Substantiation of the principles of associative steganography. Vestnik KGTU im. A.N. Tupoleva = Bulletin KSTU named after A.N. Tupolev. 2015;2:110–119. (In Russ.).

3. Raikhlin V.A., Vershinin I.S., Gibadullin R.F. The elements of associative steganography theory. Moscow University Computational Mathematics and Cybernetics. 2019;43(1):40–46. DOI: 10.3103/S0278641919010072.

4. Duda R.O., Hart P.E., Stork D.G. Pattern classification and scene analysis. New York, Wiley; 1973. 512 p.

5. Xiao N. GIS algorithms. Moscow, DMK Press; 2021. 328 p. (In Russ.).

6. Babenko L.K., Basan A.S., Zhurkin I.G., Makarevich O.B. Data protection of geoinformation systems. Moscow, Gelios ARV; 2010. 336 p. (In Russ.).

7. Tian X., Benkrid K. Mersenne twister random number generation on FPGA, CPU and GPU. 2009 NASA/ESA Conference on Adaptive Hardware and Systems, San Francisco, CA, USA. 2009. p. 460–464. DOI: 10.1109/AHS.2009.11.

8. Gribunin V.G., Okov I.N., Turincev I.V. Digital steganography. Moscow, SOLON-Press; 2002. 272 p. (In Russ.).

9. Moldovyan N.A., Moldovyan A.A., Eremeev M.A. Cryptography: from Primitives to Algorithm Synthesis. Saint Petersburg, BHV-Peterburg; 2004. 448 p. (In Russ.).

10. Morelos-Zaragoza‬ R. The Art of error correcting coding. Moscow, Tekhnosfera; 2006. 320 p. (In Russ.).

Vershinin Igor Sergeevich
Doctor of Technical Sciences Associate Professor

Scopus | ORCID | eLibrary |

Kazan National Research Technical University named after A.N. Tupolev-KAI

Kazan, the Russian Federation

Keywords: associative steganography, resistance, cartographic scenes, information security, cartographic scenes, scene analysis

For citation: Vershinin I.S. Resistance of the method for associative stegosecurity of cartographic scene data. Modeling, Optimization and Information Technology. 2023;11(4). Available from: https://moitvivt.ru/ru/journal/pdf?id=1438 DOI: 10.26102/2310-6018/2023.43.4.003 (In Russ).


Full text in PDF

Received 08.09.2023

Revised 27.09.2023

Published 05.10.2023