Особенности программной реализации методики трансформации молекулярных систем
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Features of molecular system transformation technique program realization

idSmirnova Y.A. idMarienkov A.N.

UDC 004.021, 004.94, 004.633
DOI: 10.26102/2310-6018/2023.43.4.023

  • Abstract
  • List of references
  • About authors

The paper provides the analysis of molecular system model transformation problem with respect to any element of this system, where the molecular system (MS) is understood as a formalized computer representation of the geometric coordinates of the atoms in a molecule. The analysis has demonstrated that the existing software used to simulate molecular interaction does not enable MS transformation. At the same time, MS transformation becomes more complex as the number of elements in the system increases. A new technique of MS transformation based on converting MS into a molecular graph is proposed, where the transformation is understood as a graph rearrangement with respect to a new vertex. The necessity of automating the process of analysis and processing of the formalized representation of the transformed MS is substantiated. In addition, the algorithm of the program module based on the transformation technique is described. The demonstration of the developed software product using the example of transformation of methionine molecule is given, the molecular graph and formalized computer representation of the obtained MS are presented. The software product helps to save a formalized computer representation of the transformed molecule structure. Repeated use of the methionine molecule structure representation transformed earlier will further improve efficiency and speed in modeling the interaction of methionine with other molecular systems.

1. Alykov N.M., Zharkikh L.I., Sirotin A.N. Matematicheskoe modelirovanie protsessov vozdeistviya molekul zarina, zomana i tabuna na strukturnye komponenty kletochnoi membrany. Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii. Nauchno-tekhnicheskii zhurnal. 2013;21(1):71–77. (In Russ.).

2. Starikova A.A., Samotrueva M.A., Zolotareva N.V. [et al] Izuchenie vzaimosvyazi antimikrobnoi i gipoglikemicheskoi aktivnosti novykh khinazolinonov metodami matematicheskogo modelirovaniya. Prikaspiiskii vestnik meditsiny i farmatsii. 2023; 4(1):63–70. (In Russ.).

3. Starikova A.A., Zharkikh L.I., Smirnova YU.A. Matematicheskoe modelirovanie vzaimodeistviya novogo proizvodnogo khinazolinona s D-alaninom teikhoevykh kislot kletochnoi membrany bakterii. Vestnik Permskoi gosudarstvennoi farmatsevticheskoi akademii: Sbornik materialov nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem. 2021;1:77–81. (In Russ.).

4. Solov'ev M.E. Komp'yuternaya khimiya. Moscow, SOLON-Press; 2005. 536 p. (In Russ.).

5. Matematicheskoe modelirovanie v khimicheskikh naukakh. URL: https://postnauka.ru/video/84371 (accessed on 15.09.2023). (In Russ.).

6. Programmnyi kompleks GAMESS. URL: https://www.msg.chem.iastate.edu/gamess (accessed on 15.09.2023). (In Russ.).

7. Programmnyi kompleks HyperChem. URL: http://www.hypercubeusa.com/ (accessed on 15.09.2023). (In Russ.).

8. Interpretator ChemCraft. URL: https://www.chemcraftprog.com/download.html (accessed on 15.09.2023). (In Russ.).

9. Shnicer T., Vantomm G. Sintez slozhnykh molekulyarnykh sistem – predpolagaemaya rol' khimikov-organikov. 2020. URL: https://pubmed.ncbi.nlm.nih.gov/33274282 (accessed on 15.09.2023). (In Russ.).

10. Ignatov S.K. Uchebnoe Posobie. Kvantovo-khimicheskoe modelirovanie atomno-molekulyarnykh protsessov. Nizhnii Novgorod; 2019. URL: http://www.qchem.unn.ru/files/2020/02/IgnatovSK-QCmodeling2019.pdf (accessed on 05.09.2023). (In Russ.).

11. Smirnova Yu.A., Golovatskaya L.I. Razrabotka algoritma i metoda transformatsii zapisi atomno-molekulyarnykh sistem. Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii. 2022;58(2):61–67. (In Russ.).

12. Makarov L.I. Otsenki polozheniya podgrafov v molekulyarnykh grafakh i osobennosti ikh obshchikh podgrafov. Zhurnal strukturnoi khimii. 2005;46(4):759–763. (In Russ.).

13. Melnikov A.A., Melnikov V.A., Paliulin Ya.S. Generatsiya molekulyarnykh grafov dlya QSAR-issledovanii. Doklady Akademii nauk. 2005;402(3):348–352. (In Russ.).

Smirnova Yulia Aleksandrovna

Email: 2013qwer22@gmail.com

ORCID |

V.N. Tatishchev Astrakhan State University

Astrakhan, the Russian Federation

Marienkov Aleksandr Nikolayevich
Candidate of Technical Sciences, Associate Professor
Email: marenkovan17@gmail.com

ORCID |

V.N. Tatishchev Astrakhan State University

Astrakhan, the Russian Federation

Keywords: molecular systems, synthesis of molecular systems, transformation technique, data conversion, rearrangement of molecular systems, molecular graph, formalized representation, program

For citation: Smirnova Y.A. Marienkov A.N. Features of molecular system transformation technique program realization. Modeling, Optimization and Information Technology. 2023;11(4). Available from: https://moitvivt.ru/ru/journal/pdf?id=1440 DOI: 10.26102/2310-6018/2023.43.4.023 (In Russ).

90

Full text in PDF

Received 20.09.2023

Revised 27.11.2023

Accepted 14.12.2023

Published 21.12.2023