Моделирование патч-антенны в программе конечно-элементного анализа Comsol Multiphysics
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Modeling of a patch antenna in Comsol Multiphysics finite element analysis program

Cherkesov D.S.   idKasatkina T.I.

UDC 621.396
DOI: 10.26102/2310-6018/2024.44.1.031

  • Abstract
  • List of references
  • About authors

The article evaluates in detail the capabilities of patch antennas application based on the analysis of their advantages and disadvantages. The new patch antenna design was subjected to modeling, including description of its structure and creation of a three-dimensional model. The field distribution in the patch antenna geometry was obtained, which gives a complete picture of the influence of its structural elements on the electromagnetic properties. The directional diagram of the patch antenna is obtained, which reveals the angular features of its radiation. Plots of the gain of a single patch antenna, the gain of an 8×8 uniform array, and the gain of an 8×8 microstrip patch antenna plotted in dB-scale are constructed. It is shown that the design of the rectangular microstrip patch antenna with V-shaped notches provides better polarization at the edges compared to the center in the proposed patch antenna model, which can be a critical factor in real-world applications, especially in areas where communication quality is subject to external influences. The frequency at which this antenna resonates is 1,403 GHz, this allows for a wider bandwidth and improved impedance matching. These results emphasize the promising potential of the investigated patch antenna design in modern communication technologies and wireless data transmission systems.

1. Indrasen S. Microstrip Patch Antenna and its Applications: a Survey. International Journal of Computer Applications in Technology. 2011;(2):1595–1599. (In Russ.).

2. Khamed Makhyub E. A., Kisel N.N. Issledovaniye kharakteristik mikropoloskovoy antenny s upravlyayemym metamaterialom. Izvestiya YuFU. Tekhnicheskiye nauki = News of the Southern Federal University. Technical sciences. 2019;(3):190–198. (In Russ.).

3. Vaganova A.A., Kisel N.N., Panychev A.I. Napravlennyye i polyarizatsionnyye svoystva mikropoloskovoy rekonfiguriruyemoy antenny. perestraivayemoy po chastote i polyarizatsii. Izvestiya YuFU. Tekhnicheskiye nauki = News of the Southern Federal University. Technical sciences. 2021;(2):74–83. c

4. Sangeeta K., Arvind K., Ettiyappan A., Kiran K. T., Manoj S. Design of microstrip patch antenna using Fennec Fox optimization with SSRR metamaterial for terahertz applications. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy. mekhaniki i optiki = Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics. 2023;23(6):1205–1213.

5. Dejene H. Study on received signal strength of femtocell with circular and rectangular microstrip patch antenna designed at 2.55 GHz. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy. mekhaniki i optiki = Scientific and Technical Bulletin of Information Technologies, Mechanics and Optics. 2022;(2):348–354.

6. Yukhanov Yu.V., Alshimaysawe I.A. A 5g dual-band rectangular microstrip antenna with two etches and upper hexagonal end cut CPW fed. Izvestiya YuFU. Tekhnicheskiye nauki = News of the Southern Federal University. Technical sciences. 2022;(6):206–212. (In Russ.).

7. Litinskaya E.A., Polenga S.V., Salomatov Yu.P. Antennaya reshetka na osnove rezonatorov Fabri-Pero s mekhanoelektricheskim skanirovaniyem. Izvestiya vuzov Rossii. Radioelektronika = News of Russian universities. Radio electronics. 2021;24(5):36–49. (In Russ.).

8. Steshkovoy A.A., Turovskiy A.V. Malogabaritnaya patch-antenna SVCh diapazona. Modelirovaniye. optimizatsiya i informatsionnyye tekhnologii. Nauchnyy zhurnal = Modeling, optimization and information technology. Scientific journal. 2017;5(1):1–7. (In Russ.).

9. Makoviy V.A., Andreyeva O.A., Kasatkina T.I. Model mikropoloskovoy antenny dlya sistem spetsialnoy svyazi. Teoriya i tekhnika radiosvyazi = Theory and technology of radio communication. 2018;(1):107–111. (In Russ.).

10. Kasatkina T.I. Optimizatsiya mikropoloskovoy antennoy reshetki dlya sistem svyazi UIS. Vestnik Voronezhskogo instituta FSIN Rossii = Bulletin of the Voronezh Institute of the Federal Penitentiary Service of Russia. 2017;(1):15–22. (In Russ.).

11. Jagtap R., Ugale A., Alegaonkar P. Ferro-nano-carbon split ring resonators: a bianisotropic metamaterial in X-band: Constitutive parameters analysis. = Materials Chemistry and Physics. 2018;(205):366–375.

12. Luukkonen O., Maslovski S., Tretyakov S. A Stepwise Nicolson–Ross–Weir-Based Material Parameter Extraction Method. IEEE Antennas and Wireless Propagation Letters, 2011;(10):1295–1298.

Cherkesov Danil Sergeevich

Voronezh State Technical University

Voronezh, the Russian Federation

Kasatkina Tatiana Igorevna
Candidate of Physical and Mathematical Sciences, Associate Professor

ORCID |

Voronezh State Technical University

Voronezh, the Russian Federation

Keywords: patch antenna, wireless communication, radiation pattern, gain factor, electromagnetic characteristics, antenna modeling, resonant frequency, size optimization, impedance matching

For citation: Cherkesov D.S. Kasatkina T.I. Modeling of a patch antenna in Comsol Multiphysics finite element analysis program. Modeling, Optimization and Information Technology. 2024;12(1). Available from: https://moitvivt.ru/ru/journal/pdf?id=1501 DOI: 10.26102/2310-6018/2024.44.1.031 (In Russ).

67

Full text in PDF

Received 12.03.2024

Revised 25.03.2024

Published 29.03.2024