Триггеры двигательной активности, измеряемые с помощью функциональной спектроскопия в околоинфракрасном диапазоне (fNIRS)
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Triggers of motor activity measurable by near-infrared functional spectroscopy (fNIRS): a review

Samandari A.M.   Afonin A.N.  

UDC 617.57.77
DOI: 10.26102/2310-6018/2024.45.2.004

  • Abstract
  • List of references
  • About authors

Scientific studies have differed on the interpretation of activity in the primary motor cortex of the brain. Various studies have found that the primary motor cortex is activated only during physical motor tasks. Whereas other studies have appeared that a similar measurable activity can be observed and recorded when arousing or stimulating the motor cortex when performing a mental representation of movement. Consequently, our purpose of this review was to compare the triggers of motor cortex activation during the physical execution and mental representation of the movement by recording the brain signals resulting from the stimulation by using the technique of near-infrared functional spectroscopy based on the neural interface (brain-computer interface). This research reveals differences and comparisons based on various approaches to analyze and systematically realize target triggers of motor cortex activation during training at neural interface (fNIRS). Based on the above, this review concludes by emphasising the fact that triggers of cortical activation in general and under different names cause activity that can be recorded by measuring the various changes that occur in hamoglobin concentration, in other words, that both physical task performance and similar mental representations of movement cause perceptible activity in the motor cortex. This provides the rationale for prosthetic, rehabilitation and other applications. Furthermore, this encourages future research to identify positive triggers for cortical activation to study psychological states of cognitive function and certain pathological conditions, as well as neurophysiological studies.

1. Asadullaev R.G., Afonin A.N., Shchetinina E.S. Recognition of patterns of motor activity by a neural network based on continuous optical tomography fNIRS data. Ekonomika. Informatika = Economics. Information technologies. 2021;48(4):735–746. (In Russ.) https://doi.org/10.52575/2687-0932-2021-48-4-735-746

2. Hramov A.E., Maksimenko V.A., Pisarchik A.N. Physical principles of Brain–Computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports. 2021;918:1–133. https://doi.org/10.1016/j.physrep.2021.03.002

3. Hassanien A.E., Azar A.T. Brain-Computer Interfaces: Current Trends and Applications. Cham: Springer; 2015. 422 p.

4. Berestov R.M., Nevedin A.V., Bobkov E.A., Belov V.S. Brain–Computer interface technologies for monitoring and control of bionic systems. In: 4th International Symposium and School for Young Scientists on Physics, Engineering and Technologies for Bio-Medicine, PhysBioSymp 2019: Journal of physics: conference series, 26-30 October 2019, Moscow, Russia. IOP Publishing Limited; 2021. P. 012030. https://doi.org/10.1088/1742-6596/2058/1/012030

5. Wang Z., Fang J., Zhang J. Rethinking Delayed Hemodynamic Responses for fNIRS Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023;31:4528–4538. https://doi.org/10.1109/TNSRE.2023.3330911

6. Xuejun B., Qihan Z., Peng Z., Song Z., Ying L., Xing S., Guohui P. Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study. Acta Psychologica Sinica. 2016;48(5):495–508. https://doi.org/10.3724/SP.J.1041.2016.00495

7. Dale R., O'sullivan T.D., Howard S., Orihuela-Espina F., Dehghani H. System Derived Spatial-Temporal CNN for High-Density fNIRS BCI. IEEE Open Journal of Engineering in Medicine and Biology. 2023;4:85–95. https://doi.org/10.1109/OJEMB.2023.3248492

8. Yang L., Van Hulle M.M. Real-Time Navigation in Google Street View® Using a Motor Imagery-Based BCI. Sensors. 2023;23(3). https://doi.org/10.3390/s23031704 [Accessed 16th January 2024].

9. Gulraiz A., Naseer N., Nazeer H., Khan M.J., Khan R.A., Shahbaz Khan U. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI. Sensors. 2022;22(7). https://doi.org/10.3390/s22072575 [Accessed 16th January 2024].

10. Xu B., Li W., Liu D., Zhang K., Miao M., Xu G., Song A. Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking. Mathematics. 2022;10(4). https://doi.org/10.3390/math10040618 [Accessed 17th January 2024].

11. Kurkin S.A., Badarin A.A., Grubov V.V., Maksimenko V., Hramov A.E. The oxygen saturation in the primary motor cortex during a single hand movement: functional near-infrared spectroscopy (fNIRS) study. The European Physical Journal Plus. 2021;136(5). https://doi.org/10.1140/epjp/s13360-021-01516-7 [Accessed 17th January 2024].

12. Kohli S. Exploring the relationship between hemispheric prefrontal cortex activation, standing balance, and fatigue in individuals post-stroke: A fNIRS study. URL: https://ir.lib.uwo.ca/etd/9569/ [Accessed 17th January 2024].

13. Baik S.Y., Kim J.-Y., Choi J., Baek J.Y., Park Y., Kim Y., Jung M., Lee S.-H. Prefrontal Asymmetry during Cognitive Tasks and Its Relationship with Suicide Ideation in Major Depressive Disorder: An fNIRS Study. Diagnostics. 2019;9(4). https://doi.org/10.3390/diagnostics9040193 [Accessed 17th January 2024].

14. Huang F., Hirano D., Shi Y., Taniguchi T. Comparison of cortical activation in an upper limb added-purpose task versus a single-purpose task: a near-infrared spectroscopy study. Journal of Physical Therapy Science. 2015;27(12):3891–3894. https://doi.org/10.1589/jpts.27.3891

15. Yükselen G., Öztürk O.C., Canlı G.D., Erdoğan S.B. Investigating the Neural Correlates of Processing Basic Emotions: A Functional Near-Infrared Spectroscopy (fNIRS) Study. https://doi.org/10.1101/2023.08.08.551979 [Accessed 17th January 2024].

16. Jalalvandi M., Riyahi Alam N., Sharini H., Hashemi H., Nadimi M. Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near Infrared Spectroscopy (fNIRS). Journal of Biomedical Physics and Engineering. 2021;11(5):583–594. https://doi.org/10.31661/jbpe.v0i0.1051

17. Jalalvandi M., Sharini H., Naderi Y., Riahi Alam N. Assessment of Brain Cortical Activation in Passive Movement during Wrist Task Using Functional Near Infrared Spectroscopy (fNIRS). Frontiers in Biomedical Technologies. 2019;6(2):99–105. https://doi.org/10.18502/fbt.v6i2.1691

18. Zhu L., Haghani S., Najafizadeh L. On fractality of functional near-infrared spectroscopy signals: analysis and applications. Neurophotonics. 2020;7(2). https://doi.org/10.1117/1.NPh.7.2.025001 [Accessed 17th January 2024].

19. Lee S.H., Jin S.H., An J. The difference in cortical activation pattern for complex motor skills: A functional near-infrared spectroscopy study. Scientific Reports. 2019;9(1). https://doi.org/10.1038/s41598-019-50644-9 [Accessed 17th January 2024].

20. Fishburn F.A., Ludlum R.S., Vaidya C.J., Medvedev A.V. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. NeuroImage. 2019;184:171–179. https://doi.org/10.1016/j.neuroimage.2018.09.025

21. Shi S., Qie S., Wang H., Wang J., Liu T. Recombination of the right cerebral cortex in patients with left side USN after stroke: fNIRS evidence from resting state. Frontiers in Neurology. 2023;14. https://doi.org/10.3389/fneur.2023.1178087 [Accessed 19th January 2024].

22. Li H., Liu J., Tian S., Fan S., Wang T., Qian H., Liu G., Zhu Y., Wu Y., Hu R. Language reorganization patterns in global aphasia–evidence from fNIRS. Frontiers in Neurology. 2023;13. https://doi.org/10.3389/fneur.2022.1025384 [Accessed 19th January 2024].

23. An J., Jin S.H., Lee S.H., Jang G., Abibullaev B., Lee H., Moon J.-I. Cortical Activation Pattern for Grasping during Observation,Imagery, Execution, FES, and Observation-FES integrated BCI: An fNIRS pilot study. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Proceedings of The Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 03-07 July 2013, Osaka, Japan. IEEE; 2013. P. 6345–6348.

24. Lu F.-M., Wang Y.-F., Zhang J., Chen H.-F., Yuan Z. Optical mapping of the dominant frequency of brain signal oscillations in motor systems. Scientific Reports. 2017;7(1). https://doi.org/10.1038/s41598-017-15046-9 [Accessed 19th January 2024].

25. Ma T., Chen W., Li X., Xia Y., Zhu X., He S. fNIRS Signal Classification Based on Deep Learning in Rock-Paper-Scissors Imagery Task. Applied Sciences. 2021;11(11). https://doi.org/10.3390/app11114922 [Accessed 19th January 2024].

26. Afonin A.N., Asadullaev R.G., Sitnikova M.A. Analiz dannykh fNIRS-tomografa dlya upravleniya protezami konechnostei s pomoshch'yu interfeisa mozg-komp'yuter. Nauchno-tekhnicheskii vestnik Povolzh'ya = Scientific and Technical Volga region Bulletin. 2018;(11):182–184. (In Russ.).

27. Samandari A.M.N. fNIRS as a hybrid system with EEG and with sEMG for controlling prostheses. In: Nauchnye issledovaniya molodykh uchenykh: sbornik statei XXV Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 10 November 2023, Penza, Russia. Penza: Nauka i Prosveshchenie (IP Gulyaev G.Yu.); 2023. P. 31–34. (In Russ.).

28. Kanthack T.F.D., Bigliassi M., Altimari L.R. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: A functional near-infrared spectroscopy (fNIRS) study. Motriz: Revista de Educação Física. 2013;19(3):627–632. https://doi.org/10.1590/S1980-65742013000300014

29. Arivudaiyanambi J., Mohan S., Chhabra H., Shajil N., Venkatasubramanian G. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. Biomedical Signal Processing and Control. 2020;62. https://doi.org/10.1016/j.bspc.2020.102133 [Accessed 19th January 2024].

30. Scholkmann F., Tachtsidis I., Wolf M., Wolf U. Systemic physiology augmented functional near-infrared spectroscopy: a powerful approach to study the embodied human brain. Neurophotonics. 2022;9(3). https://doi.org/10.1117/1.NPh.9.3.030801 [Accessed 19th January 2024].

31. Zohdi H., Scholkmann F., Wolf U. Individual Differences in Hemodynamic Responses Measured on the Head Due to a Long-Term Stimulation Involving Colored Light Exposure and a Cognitive Task: A SPA-fNIRS Study. Brain Sciences. 2021;11(1). https://doi.org/10.3390/brainsci11010054 [Accessed 19th January 2024].

32. Zohdi H., Egli R., Guthruf D., Scholkmann F., Wolf U. Color-dependent changes in humans during a verbal fluency task under colored light exposure assessed by SPA-fNIRS. Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-021-88059-0 [Accessed 19th January 2024].

33. Li Y., Ma Y., Ma S., Hocke L.M., Tong Y., Frederick B. A low-cost multichannel NIRS oximeter for monitoring systemic low-frequency oscillations. Neural Computing and Applications. 2020;32:15629–15641. https://doi.org/10.1007/s00521-020-04897-5

34. Kirilina E., Yu N., Jelzow A., Wabnitz H., Jacobs A.M., Tachtsidis I. Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex. Frontiers in Human Neuroscience. 2013;7. https://doi.org/10.3389/fnhum.2013.00864 [Accessed 19th January 2024].

35. Cockx H., Oostenveld R., Tabor M., Savenco E., Setten A., Cameron I., Wezel R. fNIRS is sensitive to leg activity in the primary motor cortex after systemic artifact correction. NeuroImage. 2023;269. https://doi.org/10.1016/j.neuroimage.2023.119880 [Accessed 19th January 2024].

36. Batula A.M., Mark J.A., Kim Y.E., Ayaz H. Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS. Computational Intelligence and Neuroscience. 2017;2017. https://doi.org/10.1155/2017/5491296 [Accessed 19th January 2024].

37. Asanza V., Pelaez E., Loayza F., Lorente-Leyva L.L., Peluffo-Ordóñez D.H. Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview. Sensors. 2022;22(5). https://doi.org/10.3390/s22052028 [Accessed 19th January 2024].

38. Sattar N.Y., Kausar Z., Usama S.A., Naseer N., Farooq U., Abdullah A., Hussain S.Z., Khan U.S., Khan H., Mirtaheri P. Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach. IEEE Access. 2021;9:113246–113257. https://doi.org/10.1109/ACCESS.2021.3099973

39. Maher A., Qaisar S.M., Salankar N., Jiang F., Tadeusiewicz R., Pławiak P., Abd El-Latif A.A., Hammad M. Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning. Biocybernetics and Biomedical Engineering. 2023;43(2):463–475. https://doi.org/10.1016/j.bbe.2023.05.001

40. Liu Z., Shore J., Wang M., Yuan F., Buss A., Zhao X. A systematic review on hybrid EEG/fNIRS in brain-computer interface. Biomedical Signal Processing and Control. 2021;68. https://doi.org/10.1016/j.bspc.2021.102595 [Accessed 19th January 2024].

41. Ali M.U., Kim K.S., Kallu K.D., Zafar A., Lee S.W. OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface. Bioengineering. 2023;10(5). https://doi.org/10.3390/bioengineering10050608 [Accessed 19th January 2024].

42. Pereira J., Direito B., Lührs M., Castelo-Branco M., Sousa T. Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks. Scientific Reports. 2023;13(1). https://doi.org/10.1038/s41598-023-29123-9 [Accessed 19th January 2024].

43. Samandari Аli М. Functional near-infrared spectroscopy (fNIRS) as a hybrid system: a review. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2024;12(1). https://doi.org/10.26102/2310-6018/2024.44.1.005 [Accessed 20th January 2024].

44. Thomas R., Shin S.S., Balu R. Applications of near-infrared spectroscopy in neurocritical care. Neurophotonics. 2023;10(2). https://doi.org/10.1117/1.NPh.10.2.023522 [Accessed 20th January 2024].

45. Stillwell R.A., Kitsmiller V.J., Wei A.Y., Chong A., Senn L., O’Sullivan T.D. A scalable, multi-wavelength, broad bandwidth frequency-domain near-infrared spectroscopy platform for real-time quantitative tissue optical imaging. Biomedical Optics Express. 2021;12(11):7261–7279. https://doi.org/10.1364/BOE.435913

46. Lacerenza M., Frabasile L., Buttafava M., Spinelli L., Bassani E., Micheloni F., Amendola C., Torricelli A., Contini D. Motor cortex hemodynamic response to goal-oriented and non-goal-oriented tasks in healthy subjects. Frontiers in Neuroscience. 2023;17. https://doi.org/10.3389/fnins.2023.1202705 [Accessed 20th January 2024].

47. Al-Omairi H.R., Fudickar S., Hein A., Rieger J.W. Improved Motion Artifact Correction in fNIRS Data by Combining Wavelet and Correlation-Based Signal Improvement. Sensors. 2023;23(8). https://doi.org/10.3390/s23083979 [Accessed 20th January 2024].

48. Yoo S.-H., Huang G., Hong K.-S. Physiological Noise Filtering in Functional Near-Infrared Spectroscopy Signals Using Wavelet Transform and Long-Short Term Memory Networks. Bioengineering. 2023;10(6). https://doi.org/10.3390/bioengineering10060685 [Accessed 20th January 2024].

49. Zafar A., Kallu K.D., Yaqub M.A., Ali M.U., Byun J.H., Yoon M., Kim K.S. A Hybrid GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI Study. International Journal of Intelligent Systems. 2023;2023. https://doi.org/10.1155/2023/8812844 [Accessed 20th January 2024].

50. Patashov D., Menahem Y., Gurevitch G., Kameda Y., Goldstein D., Balberg M. fNIRS: Non-stationary preprocessing methods. Biomedical Signal Processing and Control. 2023;79.1. https://doi.org/10.1016/j.bspc.2022.104110 [Accessed 20th January 2024].

51. Khan R.A., Naseer N., Saleem S., Qureshi N.K., Noori F.M., Khan M.J. Cortical Tasks-Based Optimal Filter Selection: An fNIRS Study. Journal of Healthcare Engineering. 2020;2020. https://doi.org/10.1155/2020/9152369 [Accessed 20th January 2024].

52. Ardali M.K., Rana A., Purmohammad M., Birbaumer N., Chaudhary U. Semantic and BCI-performance in completely paralyzed patients: Possibility of language attrition in completely locked in syndrome. Brain and Language. 2019;194:93–97. https://doi.org/10.1016/j.bandl.2019.05.004

53. Durantin G., Scannella S., Gateau T., Delorme A., Dehais F. Processing Functional Near Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during Simulated Flight. Frontiers in Human Neuroscience. 2016;9. https://doi.org/10.3389/fnhum.2015.00707 [Accessed 20th January 2024].

54. Rahman A., Rashid M.A., Ahmad M. Selecting the optimal conditions of Savitzky–Golay filter for fNIRS signal. Biocybernetics and Biomedical Engineering. 2019;39(3):624–637. https://doi.org/10.1016/j.bbe.2019.06.004

55. Hocke L.M., Oni I.K., Duszynski C.C., Corrigan A.V., Frederick B.B., Dunn J.F. Automated Processing of fNIRS Data–A Visual Guide to the Pitfalls and Consequences. Algorithms. 2018;11(5). https://doi.org/10.3390/a11050067 [Accessed 20th January 2024].

56. Zhang S., Zhenga Y., Wanga D., Wanga L., Maa J., Zhanga J., Xua W., Li D., Zhang D. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface. Neuroscience Letters. 2017;655:35–40. https://doi.org/10.1016/j.neulet.2017.06.044

57. Klein F., Kranczioch C. Signal Processing in fNIRS: A Case for the Removal of Systemic Activity for Single Trial Data. Frontiers in Human Neuroscience. 2019;13. https://doi.org/10.3389/fnhum.2019.00331 [Accessed 20th January 2024].

58. Lühmann A., Li X., Müller K.-R., Boas D.A., Yücel M.A. Improved physiological noise regression in fNIRS: A multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis. NeuroImage. 2020;208. https://doi.org/10.1016/j.neuroimage.2019.116472 [Accessed 20th January 2024].

59. Hong K.-S., Khan M.J., Hong M.J. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Frontiers in Human Neuroscience. 2018;12. https://doi.org/10.3389/fnhum.2018.00246 [Accessed 20th January 2024].

60. Liu R., Reimer B., Song S., Mehler B., Solovey E. Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for driver cognitive load classification. Journal of Neural Engineering. 2021;18(3). https://doi.org/10.1088/1741-2552/abd2ca [Accessed 20th January 2024].

61. Zhang C., Yang H., Fan C.-C., Chen S., Fan C., Hou Z.-G., Chen J., Peng L., Xiang K., Wu Y., Xie H. Comparing Multi-Dimensional fNIRS Features Using Bayesian Optimization-Based Neural Networks for Mild Cognitive Impairment (MCI) Detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023;31:1019–1029. https://doi.org/10.1109/TNSRE.2023.3236007

62. Phillips Z., Canoy R.J., Paik S.-H., Lee S.H., Kim B.-M. Functional Near-Infrared Spectroscopy as a Personalized Digital Healthcare Tool for Brain Monitoring. Journal of Clinical Neurology. 2023;19(2):115–124. https://doi.org/10.3988/jcn.2022.0406

63. Khalil K., Asgher U., Ayaz Y. Novel fNIRS study on homogeneous symmetric feature-based transfer learning for brain–computer interface. Scientific Reports. 2022;12(1). https://doi.org/10.1038/s41598-022-06805-4 [Accessed 20th January 2024].

64. Hamid H., Naseer N., Nazeer H., Khan M.J., Khan R.A., Khan U.S. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks. Sensors. 2022;22(5). https://doi.org/10.3390/s22051932 [Accessed 20th January 2024].

65. Dinga Q., Ouab Z., Yaoa S., Wuab C., Chena J., Shena J., Lanc Y., Xu G. Cortical activation and brain network efficiency during dual tasks: An fNIRS study. NeuroImage. 2024;289. https://doi.org/10.1016/j.neuroimage.2024.120545 [Accessed 20th January 2024].

66. Matthew N., Sudan D., Meryem A.Y., Alexander V., David A.B., Kamal S., Ning M., Duwadi S., Yücel M.A., Lühmann A.V., Boas D.A., Sen K. fNIRS Dataset During Complex Scene Analysis. https://doi.org/10.1101/2024.01.23.576715 [Accessed 20th January 2024].

Samandari Ali Mirdan

Email: aliofphysics777ali@gmail.com

Belgorod State National Research University

Belgorod, Russian Federation

Afonin Andrey Nikolaevich
Doctor of Technical Sciences, Docent

Belgorod State National Research University

Belgorod, Russian Federation

Keywords: near-infrared functional spectroscopy, triggers, motor cortex, brain-computer interface, physical movement, mental representation of movement

For citation: Samandari A.M. Afonin A.N. Triggers of motor activity measurable by near-infrared functional spectroscopy (fNIRS): a review. Modeling, Optimization and Information Technology. 2024;12(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=1522 DOI: 10.26102/2310-6018/2024.45.2.004 .


Full text in PDF

Received 28.02.2024

Revised 02.04.2024

Accepted 12.04.2024

Published 03.05.2024