Анализ адекватности математических моделей параметров частично-когерентных сигналов в радиотехнических системах
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Analysis of adequacy of mathematical models of parameters of partially coherent signals in radio-technical systems

idGlushankov E.I. Kondrshov Z.   Sudenkova A.   Rylov E.  

UDC 621.391:621.396
DOI: 10.26102/2310-6018/2024.45.2.002

  • Abstract
  • List of references
  • About authors

The article discusses the analysis of the adequacy of Markov models of parameters of partially coherent signals in radio systems based on stochastic differential equations, carried out in the MATLAB software environment. The results of modeling one-dimensional non-Gaussian and Gaussian continuous, discrete-continuous and mixed random processes are presented. The method of functional (quasi-Gaussian) approximation represents the multidimensional probability distribution density through one-dimensional component densities and elements of the correlation matrix of a vector random process. For the multidimensional probability distribution densities obtained as a result of this representation and the multidimensional stochastic differential equations synthesized on their basis, the modeling of vector random processes describing the parameters of partially coherent signals in continuous communication channels is considered. The compliance of the obtained models with theoretical distributions is assessed using the Kolmogorov-Smirnov goodness-of-fit criterion. The ranges of changes in the parameters included in the SDE at which the model can be considered consistent, as well as the influence of the parameters on the shape of the distributions under consideration, are studied. Based on the results obtained, it is possible to estimate the ranges of changes in the parameters of the models that determine the form of stochastic differential equations, under which the requirements for the adequacy of the obtained models of partially coherent in the spatial and frequency sense of signals in radio systems are met.

1. Klovskii D.D., Kontorovich V.Ya., Shirokov S.M. Modeli nepreryvnykh kanalov svyazi na osnove stokhasticheskikh differentsial'nykh uravnenii. Мoscow: Radio i svyaz; 1984. 248 p. (In Russ.).

2. Primak S., Kontorovich V., Lyandres V. Stochastic Methods and Their Applications to Communications: Stochastic Differential Equations Approach. Chichester: John Wiley & Sons; 2004. 439 p.

3. Glushankov E.I., Kontorovich V.Ya., Karavaev D.A. Signal Modeling in Continuous Communictaion Channels in the Form of Stochastic Differential Equations. Sistemy upravleniya, svyazi i bezopasnosti = Systems of Control, Communication and Security. 2023;(4):1–35. (In Russ.). DOI: 10.24412/2410-9916-2023-4-1-35.

4. Glushankov E., Kirik D., Lyalina A. Modeling and Parameter Estimation of Partially Coherent Signals in Radio Engineering Systems. Trudy uchebnykh zavedenii svyazi = Proceedings of Telecommunication Universities. 2021;7(3):16–24. (In Russ.). DOI: 10.31854/1813-324X-2021-7-3-16-24.

5. Glushankov E., Lyalina A., Rylov E. Modeling the Satellite Communication Channel Based on Stochastic Differential Equations. In: 2nd International Scientific and Practical Conference «Information Technologies and Intelligent Decision Making Systems», ITIDMS-II-2021: CEUR Workshop Proceedings: Proceedings of the II International Scientific and Practical Conference «Information Technologies and Intelligent Decision Making Systems» (ITIDMS-II-2021), 1 July 2021, Моscow, Russia. Aachen: M. Jeusfeld c/o Redaktion Sun SITE, Informatik V, RWTH Aachen; 2021. P. 52–59.

6. Kremer I.Ya., Kremer A.I., Petrov V.M., Pon'kin V.A., Potapov N.A. Prostranstvenno-vremennaya obrabotka signalov. Мoscow: Radio i svyaz; 1984. 224 p. (In Russ.).

7. Andronov I.S., Fink L.M. Peredacha diskretnykh soobshchenii po parallel'nym kanalam. Мoscow: Sovetskoe radio; 1971. 408 p. (In Russ.).

8. Lemeshko B.Yu. Neparametricheskie kriterii soglasiya. Rukovodstvo po primeneniyu. Мoscow: INFRA-M; 2014. 163 p. (In Russ.).

9. Glushankov E.I., Kontorovich V.Ya. Matematicheskoe modelirovanie signalov razlichnoi prostranstvennoi kogerentnosti v sistemakh radiosvyazi. In: Adaptivnye radiotekhnicheskie sistemy s antennymi reshetkami. Leningrad: Izdatel'stvo Leningradskogo universiteta; 1991. P. 432–466. (In Russ.).

10. Primak S., Lyandres V., Kontorovich V. Markov Models of Non-Gaussian Exponentially Correlated Processes and Their Applications. Physical Review Е. 2001;63(6):061103-1–061103-9. DOI: 10.1103/PhysRevE.63.061103.

Glushankov Evgeniy Ivanovich
Doctor of Technical Sciences,, Professor
Email: glushankov57@gmail.com

Scopus | ORCID | eLibrary |

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

St. Petersburg, Russian Federation.

Kondrshov Zahar

JSC “NIIMA “PROGRESS”

Moscow, Russian Federation.

Sudenkova Anastasia

The Bonch-Bruevich Saint-Petersburg State University of Telecommunications

St. Petersburg, Russian Federation.

Rylov Evgeniy
Candidate of Technical Sciences

eLibrary |

JSC “PCB “RIO”

St. Petersburg, Russian Federation.

Keywords: partially coherent signals, stochastic differential equations, kolmogorov-Smirnov test, rayleigh and Gauss distribution models, functional approximation, white noise, poisson noise

For citation: Glushankov E.I. Kondrshov Z. Sudenkova A. Rylov E. Analysis of adequacy of mathematical models of parameters of partially coherent signals in radio-technical systems. Modeling, Optimization and Information Technology. 2024;12(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=1541 DOI: 10.26102/2310-6018/2024.45.2.002 (In Russ).

56

Full text in PDF

Received 24.03.2024

Revised 31.03.2024

Accepted 08.04.2024

Published 08.04.2024