Метод автоматизированного проектирования экзоскелета с учетом антропометрических данных пользователя
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

A method for automated design of an exoskeleton taking into account the user’s anthropometric data

Драгунов С.  

UDC 004.94
DOI: 10.26102/2310-6018/2024.45.2.009

  • Abstract
  • List of references
  • About authors

The method of computer-aided design of the exoskeleton of the lower extremities using parametric design is intended for creating medical exoskeletons of the lower extremities according to the anthropometric parameters of the operator, which allows reducing the error in combining the axes of movement of the exoskeleton joints and the axes of movement of the operator’s joints. The method is based on rebuilding a reference model of the exoskeleton of the lower extremities according to the anthropometric data of the operator and includes the following design procedures: the procedure for taking measurements from the operator, taking the image obtained as a result of 3D scanning, filling out the application form that takes into account operational requirements, outputting the rebuilt exoskeleton model and accompanying documentation. To determine the elemental base of the exoskeleton, a database of electrical and radio components selected for operational requirements is used. To construct a frame corresponding to anthropometric data, a previously created reference model of the lower extremity exoskeleton is used. To test the model, the method also includes a virtual simulation of work by superimposing a rebuilt exoskeleton model on a 3D model of the operator obtained as a result of 3D scanning, followed by checking the animation of movements and the combination of model collisions. To test the effectiveness, we tested the construction of exoskeletons for the anthropometric data of the user using manual and automatic methods.

1. Vorobiev A.A., Zasypkina O.A., Krivonozhkina P.S., Petrukhin A.V., Pozdnyаkov A.M. Current use of exoskeleton and prospects of its implementation in habilitation and rehabilitation of disabled people (analytical review). Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta = Journal of Volgograd State Medical University. 2015;(2):9–17. (In Russ.).

2. Daminov V.D., Tkachenko P.V. Exoscletes in medicine: world experience and clinical practice of the Pyrogov Center. Vestnik Natsional'nogo mediko-khirurgicheskogo Tsentra im. N.I. Pirogova = Bulletin of Pirogov National Medical & Surgical Center. 2017;12(4-2):17–22. (In Russ.).

3. Yang K., Fei Jiang Q., Lai Wang X., Wu Chen Y., Yan Ma X. Structural design and modal analysis of exoskeleton robot for rehabilitation of lower limb. Journal of Physics: Conference Series. 2018;1087(6). https://doi.org/10.1088/1742-6596/1087/6/062004.

4. Dudorov E.A., Sokhin I.G., Bogdanov A.A., Kolbasin B.G. Ergonomic Support for the Development of Anthropomorphic Robotic Systems for Space Purposes. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = BMSTU Journal of Mechanical Engineering. 2021;(1):16–26. (In Russ.). https://doi.org/10.18698/0536-1044-2021-1-16-26.

5. Yatsun S.F., Ponedelchenko M.S., Turlapov R.N. Synthesis of control moments of the given law of motion of the three-stage manipulator exoskeleton. Vestnik Voronezhskogo instituta MVD Rossii = The Bulletin of Voronezh Institute of the Ministry of Internal Affairs of Russia. 2014;(2):146–152. (In Russ.).

6. Orlov I.A., Aliseychik A.P., Merkulova A.G., Komarova S.V., Belaya O.V., Gribkov D.A., Podoprosvetov A.V., Pavlovsky V.E., Efimov A.R., Betz K.V. The relevance of the use of industrial exoskeletons to reduce the number of occupational diseases of the musculoskeletal system of the upper body. Meditsina truda i promyshlennaya ekologiya = Russian Journal of Occupational Health and Industrial Ecology. 2019;59(7):412–416. (In Russ.). https://doi.org/10.31089/1026-9428-2019-59-7-412-416.

7. Tamozhniy V.A. Design and development of prototypes of the lower extremities of an industrial exoskeleton. Innovatsii i investitsii = Innovation and Investment. 2021;(1):150–153. (In Russ.).

8. Malyuga O.V. Proektirovanie ekzoskeleta. Saratov: IPR MEDIA; 2019. 216 p. (In Russ.).

9. Kravets A.G., Bolshakov A.A., Shcherbakov M.V. Cyber-Physical Systems: Advances in Design & Modelling. Cham: Springer Nature Switzerland AG; 2020. 347 p.

10. Chernyshova N.D., Ponomarev A.S. Development of rehabilitation exoskeletons. Vestnik nauki i obrazovaniya. 2022;(1-1):41–45. (In Russ.).

Драгунов Станислав


Volgograd, Russia

Keywords: design, CAD, automation, exoskeletons, anthropometric parameters, 3D model

For citation: Драгунов С. A method for automated design of an exoskeleton taking into account the user’s anthropometric data. Modeling, Optimization and Information Technology. 2024;12(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=1545 DOI: 10.26102/2310-6018/2024.45.2.009 (In Russ).

43

Full text in PDF

Received 01.04.2024

Revised 13.04.2024

Accepted 23.04.2024

Published 24.04.2024