Применение алгоритмов элитарной муравьиной системы и Max-Min муравьиной системы для оптимизации маршрутов в сетях квантового распределения ключей
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Application of elitist ant system and Max-Min ant system algorithms for path optimization in quantum key distribution networks

Razdyakonov E.S.,  idKorchagin S.A., idTimoshenko A.V., idBulatov M.F.

UDC 004.021
DOI: 10.26102/2310-6018/2025.48.1.012

  • Abstract
  • List of references
  • About authors

This study focuses on route optimization in quantum key distribution (QKD) networks, whose features are a number of physical constraints and strong topology dependence. This paper examines the application of two variations of the ant colony algorithm, the elitist ant system (EAS) and Max-Min ant system (MMAS) algorithms, to construct optimal routes in QKD networks. A metric for the communication efficiency of a route in QKD networks has been presented to evaluate the quality of a route according to given capacity and security requirements. The peculiarity of this metric is its non-additive capacity component, which depends on the minimum link efficiency in the route. A series of experiments were conducted on a randomly generated planar graph for long and short routes with EAS and MMAS algorithms, which resulted in MMAS being significantly more efficient for long routes, but in the case of short routes, EAS found the route faster without significant loss in solution quality. The results obtained in this study can be applied in solving problems of dynamic routing, as well as optimization of the topology of quantum key distribution networks.

1. Bennett C.H., Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science. 2014;560:7–11. https://doi.org/10.1016/j.tcs.2014.05.025

2. Peev M., Pacher C., Alléaume R., Barreiro C., Bouda J., Boxleitner W., et al. The SECOQC quantum key distribution network in Vienna. New Journal of Physics. 2009;11. https://doi.org/10.1088/1367-2630/11/7/075001

3. Mehic M., Niemiec M., Rass S., Ma J., Peev M., Aguado A., Martin A., et al. Quantum Key Distribution: A Networking Perspective. ACM Computing Surveys (CSUR). 2020;53(5). https://doi.org/10.1145/3402192

4. Salvail L., Peev M., Diamanti E., Alléaume R., Lütkenhaus N., Länger T. Security of trusted repeater quantum key distribution networks. Journal of Computer Security. 2010;18(1):61–87. https://doi.org/10.3233/JCS-2010-0373

5. Razdyakonov E.S. Survey of topology optimization methods for quantum key distribution networks. Engineering Journal of Don. 2024;(7):29–37. (In Russ.).

6. Li Q., Wang Y., Mao H., Yao J., Han Q. Mathematical model and topology evaluation of quantum key distribution network. Optics Express. 2020;28(7):9419–9434. https://doi.org/10.1364/OE.387697

7. Wang Y., Li Q., Mao H., Han Q., Huang F., Xu H. Topological optimization of hybrid quantum key distribution networks. Optics Express. 2020;28(18):26348–26358. https://doi.org/10.1364/OE.401672

8. Cirigliano L., Brosco V., Castellano C., Conti C., Pilozzi L. Optimal quantum key distribution networks: capacitance versus security. npj Quantum Information. 2024;10. https://doi.org/10.1038/s41534-024-00828-7

9. García-Cobo I., Menéndez H.D. Designing large quantum key distribution networks via medoid-based algorithms. Future Generation Computer Systems. 2021;115:814–824. https://doi.org/10.1016/j.future.2020.09.037

10. Hao Y., Tang J., Gao W. Quantum key distribution strategy based on ant colony algorithm in Quantum Trusted Relay Network. In: 2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 15–17 March 2024, Chongqing, China. IEEE; 2024. pp. 635–639. https://doi.org/10.1109/IAEAC59436.2024.10503941

11. Fernandez S.A., Juan A.A., De Armas Adrián J., E Silva D.G., Terrén D.R. Metaheuristics in Telecommunication Systems: Network Design, Routing, and Allocation Problems. IEEE Systems Journal. 2018;12(4):3948–3957. https://doi.org/10.1109/JSYST.2017.2788053

12. Pirandola S., Laurenza R., Ottaviani C., Banchi L. Fundamental limits of repeaterless quantum communications. Nature Communications. 2017;8. https://doi.org/10.1038/ncomms15043

13. Solomons N.R., Fletcher A.I., Aktas D., Venkatachalam N., Wengerowsky S., Lončarić M., Neumann S.P., Liu B., Samec Ž., et al. Scalable Authentication and Optimal Flooding in a Quantum Network. PRX Quantum. 2022;3(2). https://doi.org/10.1103/PRXQuantum.3.020311

Razdyakonov Egor Sergeevich

Financial University under the Government of the Russian Federation
Ph.D. student

Moscow, Russia

Korchagin Sergey Alekseevich
Ph.D. in Physics and Mathematics, Associate professor

ORCID |


Financial University under the Government of the Russian Federation

Moscow, Russia

Timoshenko Alexander Vasilyevich
Doctor of Technical Sciences, Professor

ORCID |

Financial University under the Government of the Russian Federation

Moscow, Russia

Bulatov Marat Fatikhovich
Doctor of Physical and Mathematical Sciences, Professor

ORCID |

Lomonosov Moscow State University

Moscow, Russia

Keywords: quantum key distribution, metaheuristics, ant algorithm, elitist ant system, max-Min ant system, pathfinding

For citation: Razdyakonov E.S., Korchagin S.A., Timoshenko A.V., Bulatov M.F. Application of elitist ant system and Max-Min ant system algorithms for path optimization in quantum key distribution networks. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1792 DOI: 10.26102/2310-6018/2025.48.1.012 (In Russ).

72

Full text in PDF

Received 30.12.2024

Revised 24.01.2025

Accepted 29.01.2025