О достижимости консенсуса в мультиагентных системах управления с лидером
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

On achievability of consensus in multi-agent control systems with a leader

Yang S. 

UDC 681.511.26
DOI: 10.26102/2310-6018/2025.48.1.023

  • Abstract
  • List of references
  • About authors

The paper proposes a distributed control algorithm for multi-agent systems with a leader. The main objective is to ensure the asymptotic convergence of the states of all follower agents to the state of the leader, under the condition that each agent uses only local information obtained from neighboring nodes. The dynamics of the agents are modeled by a second-order system – a double integrator, which allows to take into account both the position and velocity of the agents. This description more accurately reflects the properties of real systems compared to the commonly used simplified first-order models. Graph theory is employed to formalize the topology of communication links between agents. The developed algorithm is based on the idea of pinning control and uses local information about the states of neighboring agents and the leader. The Lyapunov method and eigenvalue analysis were used to study the stability of the system and to obtain analytical conditions for the gain factors that guarantee the achievement of consensus. To illustrate the efficiency and effectiveness of the proposed algorithm, numerical simulations are conducted in MATLAB. The leader's trajectory is chosen based on the optimal trajectory obtained in previous studies by the authors. The results confirm that the states of the follower agents asymptotically converge to the state of the leader over time. The proposed algorithm can be applied to solve problems of group control of mobile robots, unmanned vehicles, and other distributed technical systems.

1. Yang Sh. Optimal consensus control of multi-agent systems. Journal of Advanced Research in Technical Science. 2024;(40):36–42. (In Russ.). https://doi.org/10.26160/2474-5901-2024-40-36-42

2. Jadbabaie A., Lin J., Morse A.S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control. 2003;48(6):988–1001. https://doi.org/10.1109/TAC.2003.812781

3. Olfati-Saber R., Murray R.M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control. 2004;49(9):1520–1533. https://doi.org/10.1109/TAC.2004.834113

4. Ren W. On Consensus Algorithms for Double-Integrator Dynamics. IEEE Transactions on Automatic Control. 2008;53(6):1503–1509. https://doi.org/10.1109/TAC.2008.924961

5. Dzhunusov I.A., Fradkov A.L. Synchronization in networks of linear agents with output feedbacks. Automation and Remote Control. 2011;72(8):1615–1626. https://doi.org/10.1134/S0005117911080029

6. An S., Lian J., Wang D. Distributed Tracking Control of Multi-Agent Systems With Transfer Restricted Switching Topologies: A Cycle Stabilization Approach. IEEE Transactions on Network Science and Engineering. 2023;10(4):1964–1974. https://doi.org/10.1109/TNSE.2023.3237245

7. Lui D.G., Petrillo A., Santini S. Leader tracking control for heterogeneous uncertain nonlinear multi-agent systems via a distributed robust adaptive PID strategy. Nonlinear Dynamics. 2022;108(1):363–378. https://doi.org/10.1007/s11071-022-07240-w

8. Liang D., Wang C., Cai X., Li Yu, Xu Yu. Distributed fixed-time leader-following consensus tracking control for nonholonomic multi-agent systems with dynamic uncertainties. Neurocomputing. 2021;430:112–120. https://doi.org/10.1016/j.neucom.2020.10.094

9. Chen Ya., Zhao Qi., Zheng Yu., Zhu Yu. Containment control of hybrid multi‐agent systems. International Journal of Robust and Nonlinear Control. 2022;32(3):1355–1373. https://doi.org/10.1002/rnc.5883

10. Lewis F.L., Zhang H., Hengster-Movric K., Das A. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. London: Springer; 2014. 307 p. https://doi.org/10.1007/978-1-4471-5574-4

11. Yang S. Mobile robot trajectory planning in an environment with obstacles based on a modified particle swarm optimization algorithm. Memoirs of the Faculty of Physics Lomonosov Moscow State University. 2023;(4). (In Russ.). http://uzmu.phys.msu.ru/abstract/2023/4/2340707/

Yang Shuai

Email: shuai.yang21@physics.msu.ru

Lomonosov Moscow State University

Moscow, Russian Federation

Keywords: multi-agent systems, distributed control, consensus, leader-follower structure, graph theory, pinning control, group control

For citation: Yang S. On achievability of consensus in multi-agent control systems with a leader. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1805 DOI: 10.26102/2310-6018/2025.48.1.023 (In Russ).

89

Full text in PDF

Received 05.02.2025

Revised 17.02.2025

Accepted 21.02.2025