Аппроксимации госпитальной статистики выздоровлений от COVID-19
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Approximations of hospital statistics of recoveries from COVID-19

idBorovsky A.V., idGalkin A.L., Doroshenko S.S. 

UDC 519.218.28
DOI: 10.26102/2310-6018/2025.48.1.024

  • Abstract
  • List of references
  • About authors

Hospital statistics on COVID-19 recoveries in Irkutsk are presented in the form of the rate of recovery over a certain number of days from the full group of patients. The recovery time varies from 1 to 182 days. The number of cases considered reaches ~100000 cases. For the convenience of using the data, it is proposed to approximate the table for the recovery rate by various types of nonlinear functions. The following variants of approximating functions have been studied: Gaussian, Lorentz, modified Lorentz, Weibull function, Johnson functions. For comparison with statistics, methods were used to minimize the standard deviations of approximating functions from experimental data. The least squares method is used for functions with two and three parameters, the coordinate descent method, and the gradient descent method for functions with four fitting parameters. It is shown that the best fitting results are provided by a modified Lorentz function with four parameters. According to the degree of discrepancy with experimental statistics, the approximating functions are arranged in the following order: the Weibull function provides the least accurate fit (16.15%), followed by the Johnson function SU (10.65%), slightly better fit for the Johnson function SB (8.49%), for the Gaussian function (5.8%), for the Lorentz function the fit is (3.2828%), the best fit is given by the modified Lorentzian function (3.2804%) under certain approximations.

1. Lopatin A.A., Safronov V.A., Razdorskiy A.S., Kouklev E.V. Current State of Problem of Mathematical Modeling and Prognosis of the Epidemic Process. Problems of Particularly Dangerous Infections. 2010;(3):28–30. (In Russ.).

2. Golovinski P.A. Mathematical modelling of the transmission of viruses with a long incubation period in a small-world network. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies. 2020;(2):5–14. (In Russ.). https://doi.org/10.17308/sait.2020.2/2909

3. Trigger S.A., Czerniawski E.B. Equation for Epidemic Spread with the Quarantine Measures: Application to COVID-19. Physica Scripta. 2020;95(10). https://doi.org/10.1088/1402-4896/abb2e2

4. Makarov V.L., Bakhtizin A.R., Sushko E.D., Ageeva A.F. COVID-19 Epidemic Modeling – Advantages of an Agent-Based Approach. Ekonomicheskie i Sotsial'nye Peremeny: Fakty, Tendentsii, Prognoz. 2020;13(4):58–70. (In Russ.). https://doi.org/10.15838/esc.2020.4.70.3

5. Borovsky A.V., Galkin A.L. Model of Epidemic Kinetics with a Source on the Example of Moscow. Computational and Mathematical Methods in Medicine. 2022;2022. https://doi.org/10.1155/2022/6145242

6. Tsvetkov V.V., Tokin I.I., Lioznov D.A., Venev E.V., Kulikov A.N. Predicting the duration of inpatient treatment for COVID-19 patients. Medical Council. 2020;(17):82–90. (In Russ.). https://doi.org/10.21518/2079-701X-2020-17-82-90

7. Borovsky A.V., Galkin A.L., Ilinykh N.N., Kozlova S.S. New Results of Epidemic Models on the Example of COVID-19. System Analysis & Mathematical Modeling. 2022;4(4):255–274. (In Russ.). https://doi.org/10.17150/2713-1734.2022.4(4).255-274

8. Borovsky A.V., Galkin A.L., Kozlova S.S. Mathematical modeling of statistical data on the incidence of new coronavirus infection, taking into account the stratification by concomitant diagnoses. Vestnik of Astrakhan State Technical University. Series: Management, Computer Science and Informatics. 2024;(3):95–106. (In Russ.). https://doi.org/10.24143/2072-9502-2024-3-95-106

9. Korolev V.Yu., Sokolov I.A. On conditions of convergence of the distributions of extremal order statistics to the Weibull distribution. Informatics and Applications. 2014;8(3):3–11. (In Russ.). https://doi.org/10.14357/19922264140301

10. Johnson N.L. Systems of Frequency Curves Generated by Methods of Translation. Biometrika. 1949;36(1/2):149–176. https://doi.org/10.2307/2332539

11. Ivanova Yu.P., Sokolova E.V., Sakharova A.A., Ivanova O.O., Azarov V.N. Checking compliance with Weibull's law for various wind directions typical of the linear city of Volgograd. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroiteľnogo universiteta. Seriya: Stroiteľstvo i arhitektura. 2020;(3):134–141. (In Russ.).

12. Boiko Yu.M., Marikhin V.A., Myasnikova L.P., Moskalyuk O.A., Radovanova E.I. Statistical analysis of the strength of ultra-oriented ultra-high-molecular-weight polyethylene film filaments in the framework of the Weibull model. Physics of the Solid State. 2016;58(10):2141–2144. https://doi.org/10.1134/S1063783416100103

13. Prokhorov S.A., Danilenko M.S. Model' prognozirovaniya defektnykh uchastkov magistral'nykh gazoprovodov s pomoshch'yu zadannogo zakona raspredeleniya Veibulla. Natural and Technical Sciences. 2016;(4):220–224. (In Russ.).

14. Grodzenskaya I.S. Issledovanie effektivnosti posledovatel'nykh metodov obnaruzheniya signalov na fone pomekh, imeyushchikh raspredelenie Veibulla. Metrologiya. 2006;(7):30–35. (In Russ.).

15. Shneiderov E.N. Ispol'zovanie raspredeleniya Veibulla dlya gruppovogo prognozirovaniya parametricheskoi nadezhnosti izdelii elektronnoi tekhniki. In: Sovremennye sredstva svyazi: Materialy XVII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 16–18 October 2012, Minsk, Belarus. Minsk: Vysshii gosudarstvennyi kolledzh svyazi; 2012. pp. 152–153. (In Russ.).

16. Osovets S.V., Azizova T.V., Gergenreider S.N. Methods of Uncertainty Assessment for Deterministic Effects Dose Thresholds. Мedical Radiology and Radiation Safety. 2010;55(3):11–16. (In Russ.).

17. Elandt-Johnson R.C., Johnson N.L. Survival Models and Data Analysis. New York: John Wiley & Sons, Inc.; 1999. 457 p.

18. Hogg R.V., Klugman S.A. Loss distributions. New York: John Wiley & Sons, Inc.; 1984. 235 p.

19. Kobzar' A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov. Moscow: FIZMATLIT; 2006. 816 p. (In Russ.).

20. Borbats N.M., Shkolina T.V. The Procedure for Selecting a Curve from the Johnson System by Percentile Matching and Maximum Likelihood and Least Squares Approaches in R. System Analysis & Mathematical Modeling. 2023;5(4):476–493. (In Russ.). https://doi.org/10.17150/2713-1734.2023.5(4).476-493

21. Kalitkin N.N. Chislennye metody. Moscow: Glavnaya redaktsiya fiziko-matematicheskoi literatury izd-va "Nauka"; 1978. 512 p. (In Russ.).

22. Borovskii A.V., Doroshenko S.S. Vyvod vyrazheniya dlya yadra integral'nogo operatora v integro-differentsial'noi modeli rasprostraneniya epidemii COVID-19. In: Lyapunovskie chteniya – 2024: Materialy 40-i mezhdunarodnoi konferentsii, 02–06 December 2024, Irkutsk, Russia. Irkutsk: IDSTU SO RAN; 2024. pp. 26–29. (In Russ.).

Borovsky Andrey Victorovich
Doctor of Physical and Mathematical Sciensies
Email: andrei-borovskii@mail.ru

ORCID |

Baikal State University

Irkutsk, Russian Federation

Galkin Andrey Leonidovich
Doctor of Physical and Mathematical Sciences

ORCID |

A.M. Prokhorov Institute of General Physics of the Russian Academy of Sciences

Moscow, Russian Federation

Doroshenko Svetlana Sergeevna

Email: kozlova_ss@iokb.ru

Irkutsk Order of the Badge of Honor Regional Clinical Hospital
Baikal State University

Irkutsk, Russian Federation

Keywords: epidemic theory, optimization methods, coordinate descent, gradient descent, least squares method, gauss approximation, lorentz approximation, weibull approximation, johnson approximation, modified Lorentz distribution

For citation: Borovsky A.V., Galkin A.L., Doroshenko S.S. Approximations of hospital statistics of recoveries from COVID-19. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1812 DOI: 10.26102/2310-6018/2025.48.1.024 (In Russ).

53

Full text in PDF

Received 04.02.2025

Revised 19.02.2025

Accepted 26.02.2025