Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018


idDanilov V.V. idLaptev N.V. idKolpashchikov D.U.

UDC 621.865.8

  • Abstract
  • List of references
  • About authors

Nowadays transcatheter minimally invasive surgery has gained popularity due to the shorter rehabilitation period of patients and lower risks during such interventions. However, this type of surgery is manually performed by surgeons and clinicians, which requires a high skill of specialists. Additionally, transcatheter surgery takes a lot of time and thereby increases the risk of medical error. The robotic solutions available today are expensive and inaccessible to most hospitals, clinics and medical centers. A solution of this problem may be the development of a simple automated control system, the usage of which will increase accuracy, repeatability, and reduce the risks related to the human factor. A medical catheter represents a manipulator that can bend in any point of its structure. This structural feature allows these manipulators to work in places with complex geometry, including the anatomical structures of the human body. In this regard, catheters have found their application in many fields, including medicine and industry. However, the control of this type of robots is complicated by the presence of flexible links tending to infinity. For positioning and orientation of continuous robots, forward and inverse kinematics algorithms are used. One of the most promising approaches is the Forward And Backward Reaching Inverse Kinematics algorithm (FABRIK). In this regard, this paper presents a fast and reliable system without feedback and based on the FABRIK algorithm for automatic control of a continuous robot.

1. Walker I.D. Continuous Backbone Continuum Robot Manipulators . ISRN Robotics. 2013;2013:1–19. DOI: 10.5402/2013/726506 .

2. Dong X., Axinte D., Palmer D., Cobos S., Raffles M., Rabani A., Kell J. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines. Robotics and Computer-Integrated Manufacturing. 2017;44:218–229. DOI:10.1016/j.rcim.2016.09.004

3. Buckingham R., Graham A. Nuclear snake‐arm robots. Ind. Robot An Int. J. 2012;39(1):6– 11

4. Mehling J.S., Diftler M.A., Chu M., Valvo M. A Minimally Invasive Tendril Robot for InSpace Inspection. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. 2006. BioRob 2006., Pisa, 2006; 2006: 690-695. DOI: 10.1109/BIOROB.2006.1639170

5. LaserSnake versus Dragon. OCRobotics. URL: http://www.ocrobotics.com/news/lasersnake-versus-dragon/(date of access: 26.09.2019).Burgner-Kahrs J., Rucker D.C., Choset H. Continuum Robots for Medical Applications: A Survey. IEEE Trans. Robot. 2015;31(6):1261–1280

6. Galin R., Meshcheryakov R. Automation and robotics in the context of Industry 4.0: The shift to collaborative robots. IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing. 2019;537(3).

7. Jones B.A., Walker I.D Kinematics for multisection continuum robots. IEEE Transactions on Robotics, 2006;22(1):43-55 DOI: 10.1109/TRO.2005.861458

8. Zheng L., Liao W., Hongliang R., Haoyong Y. Kinematic comparison of surgical tendondriven manipulators and concentric tube manipulators, Mechanism and Machine Theory, Elsevier Ltd. 2017;107:148–165. DOI: 10.1016/j.mechmachtheory.2016.09.018.

9. S. Neppalli, M.A. Csencsits, B.A. Jones, I. D. Walker. Closed-form inverse kinematics for continuum manipulators. Advanced Robotics. 2009;23(15):2077–2091. DOI: 10.1163/016918609X12529299964101.

10. Aristidou A., Lasenby J. FABRIK: A fast, iterative solver for the Inverse Kinematics problem. Graph. Models. Elsevier Inc. 2011;73(5):243–260.

11. Zhang W., Yang Z., Dong T., Xu K. FABRIKc: an Efficient Iterative Inverse Kinematics Solver for Continuum Robots. 2018 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics. IEEE, 2018; с. 346–352. DOI: 10.1109/AIM.2018.8452693

12. Kolpashchikov D.Y., Laptev N.V., Danilov V.V., Skirnevskiy I.P., Manakov R.A., Gerget O.M. FABRIK-Based Inverse Kinematics for Multi-Section Continuum Robots. Proceedings of the 2018 18th International Conference on Mechatronics - Mechatronika, ME 2018. Institute of Electrical and Electronics Engineers Inc. 2019. 8624888. (Proceedings of the 2018 18th International Conference on Mechatronics - Mechatronika, ME 2018).

13. Kolpashchikov D. et al. Inverse Kinematics for Steerable Concentric Continuum Robots. Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. Smart Innovation, Systems and Technologies. Singapore: Springer. 2019;154:89–100. DOI:10.1007/978-981-13-9267-2_8.

14. Li Z., Du R. Design and analysis of a bio-inspired wire-driven multi-section flexible robot: Regular paper. Int. J. Adv. Robot. Syst. 2013;10.

15. Li Z., Du R. Design and analysis of a bio-inspired wire-driven multi-section flexible robot: Regular paper. Int. J. Adv. Robot. Syst. 2013;10.

Danilov Vyacheslav Vladimirovich


Tomsk Polytechnic University

Tomsk, Russian Federation

Laptev Nikita Vitalievich


Tomsk Polytechnic University

Tomsk, Russian Federation

Kolpashchikov Dmitriy Urevich


Tomsk Polytechnic University

Tomsk, Russian Federation

Keywords: fabrik, continuous robot, catheter, automation, positioning

For citation: Danilov V.V. Laptev N.V. Kolpashchikov D.U. AUTOMATIC CONTROL OF A CONTINUOUS ROBOT USING THE FABRIK ALGORITHM. Modeling, Optimization and Information Technology. 2013;1(1). Available from: https://moitvivt.ru/ru/journal/pdf?id=34 DOI: (In Russ).


Full text in PDF