ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКИХ ПРОЦЕССОВ В АВТОФАЗНЫХ ЭЛЕКТРОННЫХ ПОТОКАХ (англ.)
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

THE NUMERICAL MODELLING OF DYNAMIC PROCESSES IN AUTOPHASE ELECTRON BEAMS

Vorotyntseva I.I.   Martsenyuk N.O.  

UDC 621.385
DOI:

  • Abstract
  • List of references
  • About authors

The article looks into dynamic processes in an autophase TWT in the mood of back energy transformation on the basis of a 3-D numerical model. It has been shown that the mood of back energy transformation is characterized by the dependence of the electron wave interaction on the stable capture mood of an electron beam by the HF-field. The analysis of dynamic defocusing in autophase TWT in the mood of back energy transformation was studied. The defocusing of the electron flow in the dynamic mood is characterized firstly by the increasing field of the space charge density in the capture bunch, and next is radial and azimuth spiral field. The latter’s begin to act in the autophase section exit when many electrons exit the capture and partly defocusing of the electron flow takes place under field of the space charge action leading to the local current subsidence. The mechanism of the maximum transformation HF-power achievement is accompanied by gradual potential well shoaling and the bunch breakup.The potential well shoaling to a critical level takes place at significant residual values of the input HF-power.The current subsidence takes place in local regions and it is determined by uncaptured electrons and capture leaving particles. The essential unlaminarity of the electron flow rises the current subsidence on the RS and together with the capture violation decreases the device efficiency. The analysis of phase diagrams makes it possible to monitor the evolution of an electron bunch capture up to its destruction and to allocate the wave length field of an autophase section where the process of energy transformation is still taking place.

1. Kats A. M., Il'ina E. M., Man'kin I. A. Nelineynye yavleniya v SVCh priborakh O-tipa s dlitel'nym vzaimodeystviem. M. : Sovetskoe radio, 1975. 295 s.

2. Solntsev V. A., Vedyashkina K. A., Semina T. S. Analiz dvumernykh nelineynykh effektov v LBV // Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 1977. Vyp. 6. S. 53-69.

3. Bondarenko B. N., Vorotyntseva I. I. The numerical modeling of the autophase TWT in the intensification regime // Physics in Ukraine. Kiev, 1993. P. 28-30.

4. Bondarenko B. N., Vorotyntseva I. I. The numerical modeling of the autophase TWT in the intensification regime // Physics in Ukraine. Kiev, 1993. P. 28-30.

5. Vorotyntseva I., Martsenyuk N. Autophase microwave-convertor with multiple energy input //Austrian Journal of Technical and Natural Sciences. 2016. № 3-4. P. 109-111.

6. Vorotyntseva I., Martsenyuk N. Optimization of energy conversion in ALBW applying static fields // Успехи современной науки и образования. 2016, Vol. 8. № 12. P. 117-122.

Vorotyntseva Irina Ivanovna
Candidate of Physical and Mathematical Sciences
Email: tyncher@inbox.ru

Moscow automobile and road construction state technical university

Moscow, Russian Federation

Martsenyuk Natalia Olegovna

Email: MarcenjukNO@mgsu.ru

Moscow State University of Civil Engineering

Moscow, Russian Federation

Keywords: phase focusing, current subsidence, field of space charge, numerical methods

For citation: Vorotyntseva I.I. Martsenyuk N.O. THE NUMERICAL MODELLING OF DYNAMIC PROCESSES IN AUTOPHASE ELECTRON BEAMS. Modeling, Optimization and Information Technology. 2017;5(4). Available from: https://moit.vivt.ru/wp-content/uploads/2017/10/VorotyntsevaMartsenyuk_4_1_17.pdf DOI: (In Russ).

381

Full text in PDF