ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ОПТОАКУСТИЧЕСКОЙ ПРОТОЧНОЙ ЦИТОМЕТРИИ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

EXPERIMENTAL STUDIES OF MOVING MODEL LIQUID FOR OPTOACOUSTIC FLOW CYTOMETRY

Orda-zhigulina D.V.   Orda-zhigulina M.V.   Starchenko I.B.   Kravchuk D.A.  

UDC 534:535
DOI:

  • Abstract
  • List of references
  • About authors

In modern biomedical research we can see the tendency using more and more noninvasive technologies using new diagnostic method based on the safe for human physical effects, for example, optoacoustic effect. In this paper described the experimental set for studying the spectrum of acoustic signal in a stationary and moving model liquid using nanosized objects as contrast agents while optoacoustic transformation. Optoacoustic medical methods are hybrid technique of diagnostics using ultrasonic and laser methods in the same time for study biological objects by draw conclusions about investigated objects the objects through the form of the temporal realization of the signal. Investigated objects in optoacoustic methods are tissues and substances that are capable of absorbing and reflecting light waves including biological fluids and tissues, for example, blood refers. In this paper gived a detailed description of the experimental set. As a result of the experiment the spectral characteristics of the acoustic signal for a stationary and moving liquid were obtained. The results were discussed and conclusions were made about the influence of the flow velocity on the total acoustic field resulting from the optoacoustic transformation. The experimental set and the results obtained can be useful to check theoretical calculations for development of optoacoustic flow cytometry technology.

1. Galanzha E., Sarimollaoglu M., Nedosekin D.A., Keyrouz S.G., Mehta J.L., Zharov V.P. In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts. // Journal of cytometry, Volume 79(10), 2011.

2. Dmitry A. Nedosekin, Jacqueline Nolan, Alexandru S. Biris, Vladimir P. Zharov. Photoacoustic bio-quantification of graphene based nanomaterials at a single cell level (Conference Presentation). / Photons Plus Ultrasound: Imaging and Sensing, Volume 10064, 2017.

3. Quanyu Zhou, Ping Yang, Qiyan Wang, Kai Pang, Hui Zhou, Hao He, Xunbin Wei. Label-free counting of circulating cells by in vivo photoacoustic flow cytometry. // Biophotonics and Immune Responses XIII, Volume 10495, 2018.

4. Kiran Bhattacharyya, Benjamin S. Goldschmidt, John A. Viator, Detection and capture of breast cancer cells with photoacoustic flow cytometry. // Journal of Biomedical Optics, Volume 21(8), 2016.

5. G.Ju. Dzhuplina, V.A. Zakarjan, G.V. Kalashnikov, A.V. Saenko, I.B. Starchenko. Jeksperimental'nye issledovanija optoakusticheskogo jeffekta v model'nyh suspenzijah nanotrubok i nanovolokon s ispol'zovaniem infrakrasnogo lazera. // IZVESTIJa JuFU. TEHNIChESKIE NAUKI. No.9(22). 2011. pp.180-186.

6. Kravchuk D.A., Orda-Zhigulina D.V., Sliva G.Ju. Jeksperimental'nye issledovanija optoakusticheskogo jeffekta v dvizhushhejsja zhidkosti. // Izvestija JuFU. Tehnicheskie nauki. 2017. No. 4 (189). pp.246-254.

7. S.A. Regirer. Gidrodinamika krovoobrashhenija. Moskva: Mir, 1971. – 270 s.

8. Starchenko I.B., Maljukov S.P., Orda-Zhigulina D.V., Saenko A.V. Izmeritel'nyj kompleks dlja lazernoj diagnostiki bioob#ektov s ispol'zovaniem nanochastic na baze LIMO 100. // Prikaspijskij zhurnal: upravlenie i vysokie tehnologii. 2013. No. 2 (22). pp.166-173.

9. A.E. Medvedev. Dvuhfaznaja model' techenija krovi. // Rossijskij zhurnal biomehaniki. Vol. 17. No.4(22). S.22-36.

10. D.A. Kravchuk, I.B. Starchenko. Matematicheskoe modelirovanie optikoakusticheskogo signala ot jeritrocitov. // Vestnik novyh medicinskih tehnologij. No. 1. 2018. PP.96-101.

11. Kravchuk D.A., Orda-Zhigulina D.V., Sliva G.Ju. Jeksperimental'nye issledovanija optoakusticheskogo jeffekta v dvizhushhejsja zhidkosti. // Izvestija JuFU. Tehnicheskie nauki. 2017. No.4 (189). pp.246-254.

12. Kravchuk D.A, Starchenko I.B. Modelirovanie processa nasyshhenija kislorodom biologicheskih tkanej s pomoshh'ju optoakusticheskogo metoda // Nauchnoe priborostroenie. – 2018. – T. 28, № 2. – S. 20-25.

13. .Starchenko I.B., Kravchuk D.A., Kirichenko I.A. Prototip optoakusticheskogo lazernogo citometra // Medicinskaja tehnika. – 2017. – № 5. – C. 4-7.

Orda-zhigulina Dina Vladimirovna

Email: dinazhigulina@mail.ru

Southern Scientific Center of Russian Academy of Sciences (SSC RAS)

Rostov-on-Don, Russian Federation

Orda-zhigulina Marina Vladimirovna

Southern Scientific Center of Russian Academy of Sciences (SSC RAS)

Rostov-on-Don, Russian Federation

Starchenko Irina Borisovna
Doctor of Technical Sciences, Professor

OOO Parametika

Rostov-on-Don, Russian Federation

Kravchuk Denis Alexandrovich
Candidate of Technical Sciences, Associate Professor

Southern Federal University

Rostov-on-Don, Russian Federation

Keywords: optoacoustic effect, flow cytometry, acoustic signal, carbon nanotubes, laser sound excitation, experimental studies

For citation: Orda-zhigulina D.V. Orda-zhigulina M.V. Starchenko I.B. Kravchuk D.A. EXPERIMENTAL STUDIES OF MOVING MODEL LIQUID FOR OPTOACOUSTIC FLOW CYTOMETRY. Modeling, Optimization and Information Technology. 2018;6(3). Available from: https://moit.vivt.ru/wp-content/uploads/2018/07/Orda-ZhigulinaSoavtori_3_18_1.pdf DOI: (In Russ).

564

Full text in PDF