МОДЕЛИРОВАНИЕ МЕТАЛЛО-ДИЭЛЕКТРИЧЕСКОЙ АНТЕННЫ НА ОСНОВЕ КОМБИНИРОВАННОГО ПОДХОДА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

THE SIMULATION OF METAL-DIELECTRIC ANTENNA ON THE BASE OF COMBINED APPROACH

Lvovich I.Y.   Preobrazhensky A.P.   Choporov O.N.   Ruzhitsky E.  

UDC 621.396
DOI: 10.26102/2310-6018/2018.23.4.017

  • Abstract
  • List of references
  • About authors

The structure of modern radio transmitting devices may include antennas formed of both metal and dielectric components-metal-dielectric antennas. They are compact enough and can be placed on various objects of equipment. The paper presents a simulation of a metal-dielectric antenna based on a combined approach. The scheme of antenna construction in different planes is given. The process of scattering of a plane electromagnetic wave on an antenna is considered. The combined algorithm including the method of the integral equation, parallel approach and genetic algorithm is developed. In this paper, the integral equation is used to determine the unknown surface electric currents on the antenna surface, it is solved on the basis of the method of moments. A parallel algorithm was used to speed up the calculations. The impedance matrix is represented as a block matrix. Each block has its own parallel stream. Taking into account the influence of a plane dielectric waveguide on the scattered field, a method associated with a generalized scattering matrix is used. To solve the problem of multi-alternative optimization associated with determining the linear dimensions of the antenna device at a given operating frequency of the antenna, a genetic algorithm is used. As a result, the dimensions of the designed antenna for the specified dimensions of its components are obtained.

1. Steynberg B.D. Experimental determination of EPO individual reflective parts of the aircraft. / B.D.Steynberg, D.L.Carlson, Wu Stan Lee. // Proc, 1989, № 5, pp. 35-42.

2. Chislennye diffraction theory: Coll.articles. Trans. from English.- M .: Mir, 1982. - 200 p.

3. Numerical methods in electrodynamics". Ed.Mitra R.-M.:Mir, 1977 - 485 p

4. Preobrazhenskiy A.P. Assessment of possibilities combined method for calculating EPR-dimensional perfectly conducting cavities / A.P. Preobrazhenskiy // Telecommunications 2003, №11, pp. 37-40.

5. Ling H. RCS of waveguide cavities: a hybrid boundary-integral / modal approach / H. Ling // IEEE Trans. Antennas Propagat., 1990, vol. AP-38, no. 9, pp. 1413-1420.

6. Zaharov E.V. Numerical analysis of the diffraction of radio waves / E.V.Zaharov, Y.Pimenov // M .: Nauka, 1986 - 184 p.

7. Vasilev E.N. Excitation of bodies of revolution / E.N. Vasilev // Moscow: Radio and communication, 1987. - 272 p.

8. Mitra R. Analytical and numerical studies of the relative convergence phenomenon arising in the solution of an integral equation by the moment method / R.Mitra, Itoh Tatsuo, Li.Ti-Shu // IEEE Trans. Microwave Theory Tech., 1972, vol. MTT-20, no. 2. - Pp. 96-104.

9. Preobrazhensky A.P. Modeling and analysis of diffractive structures algorithmization CAD radar antenna / A.P.Preobrazhensky // Voronezh, Scientific Book 2007, 248 p.

10. Shtager E.A. Scattering of waves on a complex shape bodies / E.A.Shtager, E.N. Chayevskiy // M .: Sov. radio, 1974. - 240 p

11. Sekine T. Transient Analysis of Lossy Nonuniform Transmission Line Using the Finite Difference Time Domain Method / T.Sekine, K.Kobayashi, and S.Yokokawa // Electronics and Communications in Japan, Part 3, vol.85, no. 8, Aug. 2002, pp. 1018-1026.

12. Lu T. L. Research of Experiments and the FDTD Method of Multi-condcutor Transmission Lines for Transient Analsysis / T. L.Lu, L.Guo, X.Cui, and X. Gu. Hagness // IEEE EMC Symp., no. 138, , 2004, pp. 708-712.

13. Johansson F. S. A new planar grating-reflector antenna. / F. S. Johansson // IEEE Trans. Antennas and Propag, 1990. - V. 38. - № 9. - Pр. 1491-1495.

14. Hirono T. A Three-Dimensional FourthOrder Finite-Difference TimeDomain Scheme Using a Symplectic Integrator Propagator / T.Hirono, W.Lui, S.Seki, and Y.Yoshikuni // IEEE Trans. Microwave Theory Tech., vol. 49, no.4, , Sep. 2001, pp. 1640-1648.

15. Avdeev, D. B. High-performance three-dimensional electromagnetic modelling using modified Neumann series: Wide-band numerical solution and examples, 1. / D. B.Avdeev, A. V. Kuv shinov, O. V. Pankratov, and G. A. Newman //Geomagn. Geoelectr, 49, 1997, p.1519-1539 .

16. Avdeev D. B. Three dimensional induction logging problems, part I, An integral equation solution and model comparison // D. B.Avdeev, A. V. Kuv shinov, O. V. Pankratov, and G. A. Newman //// Geophysics, 67, 2002, p.413-426.

17. Michalski K. A. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part II: Implementation and results for contiguous half-spaces / K. A. Michalski and D.Zheng // IEEE Trans. Antennas Propag., Vol. 38, No. 3, Mar. 1990, pp.345-352.

18. Spiridonov A.O. Parallel computing for numerical calculations of step-index optical fibers eigenmodes by collocation method // A.O.Spiridonov, E.M. Karchevskii / Proceedings of the International Conference days on diffraction, 2014, p. 209-214.

19. Amodio P. Parallel factorizations and parallel solvers for tridiagonal linearsystems / P.Amodio and L. Brugano// Linear Algebra and its Applications, 1992, v.172,, pp. 347 - 364.

20. Amodio, L. Parallel factorizations for tridiagonal matrices / Amodio, L. Brugano, and T. Politi // SIAM J. Numer. Anal., 1993, vol. 30, pp. 813 - 823.

21. Bandyopadhyay S. Pattern Classification Using Genetic Algorithms / S.Bandyopadhyay and C.A.Muthy // Pattern Recognition Letters, Vol. 16, 1995., pp. 801-808.

22. Marwan A.Ali Structure Optimization of Neural Controller Using Genetic Algorithm Technique / Marwan. A.Ali, Mat Sakim. H.A, Rosmiwati MohdMokhtar // European Journal of Scientific Research, Vol.38, No.2, 2009, pp.248-271.

23. Satyanarayana D. Genetic Algorithm Optimized Neural Networks Ensemble for Estimation of Mefenamic Acid and Paracetamol in Tablets / D.Satyanarayana, K.Kamarajan, and M.Rajappan //Genetic Algorithm Optimized Neural Networks Ensemble, Acta Chim. SlovVolume 52, 2005, pp. 440-449.

24. Kuncheva, L.I. Designing Classifier Fusion Systems by Genetic Algorithms / L.I.Kuncheva, and L.C.Jain // IEEE Transaction on Evolutionary Computation, Vol. 33, 2000, pp. 351-373.

Lvovich Igor Yakovlevich
Doctor of Technical Sciences, Professor
Email: office@vivt.ru

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Preobrazhensky Andrei Petrovich
Doctor of Technical Sciences, Professor
Email: app@vivt.ru

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Choporov Oleg Nikolaevich
Doctor of Technical Sciences, Professor
Email: choporov_oleg@mail.ru

Voronezh State Technical University

Voronezh, Russian Federation

Ruzhitsky Evgeny
Professor
Email: eugen.ruzicky@paneurouni.com

Pan-European University

Bratislava, Russian Federation

Keywords: antenna, integral equation, parallel approach, optimization, genetic algorithm

For citation: Lvovich I.Y. Preobrazhensky A.P. Choporov O.N. Ruzhitsky E. THE SIMULATION OF METAL-DIELECTRIC ANTENNA ON THE BASE OF COMBINED APPROACH. Modeling, Optimization and Information Technology. 2018;6(4). Available from: https://moit.vivt.ru/wp-content/uploads/2018/10/LvovichSoavtors_4_18_1.pdf DOI: 10.26102/2310-6018/2018.23.4.017 (In Russ).

549

Full text in PDF