Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018


Kucheryavenko A.V.  

UDC 62.523.8
DOI: 10.26102/2310-6018/2019.24.1.026

  • Abstract
  • List of references
  • About authors

The article discusses the occurrence of noise components from rotating structural elements of the aircraft or turboprop components and the effect of these components on the radio signal tracking aerodynamic object. The masking effect of signals from rotating elements affects the observation of the glider component, which interferes with the tracking of the object. The need to suppress the turboprop components in the radio signal is noted. To solve the problem, it is proposed to use fractal signal processing methods. An algorithm for suppressing turboprop spectral components in an echo signal of an aerodynamic object, based on the definition of the similarity function, is proposed. The article describes the steps of the algorithm and its block diagram. An example of a signal from a bank of temporal functions of micromovements of an object's structural elements, used as a basis for approximating the initial echo signal, is given. A simulation was performed for a single aerodynamic object, confirming the suppression of the turboprop component of the echo signal. The proposed algorithm is proposed to be used to classify the number of objects in a swarm of unmanned aerial vehicles. The necessity of decreasing the interval of discreteness of the parameters describing the kinematics of the object's micro-movements is noted. The materials are of practical value in radiolocation when accompanied by unmanned aerial vehicles to eliminate interfering components in the far-Doppler portrait of the object, automatic coordination, navigation, and increased flight safety.

1. Slyusar N.M. The effect of secondary modulation of radar signals: the physical basis and practical application // Bulletin of the Military Academy of the Republic of Belarus. 2003. №1. Pp. 61-77.

2. Mulla S. Wavelets in signal processing: Trans. from English M. Mir, 2005. 671 p. with silt. (Mallat S. A wavelet tour of signal processing. Academic press. 2005. 671 p.)

3. Kucheryavenko A.V. Models of micromotion causing turboprop effect // Engineering Bulletin of the Don, 2019, No. 1.

4. Kucheryavenko A.V., Fedosov V.P. Model of multicomponent microDoppler signal in environment MatLab // XIII International ScientificTechnical Conference "Dynamics of Technical Systems". "DTS-2017". Rostov-na-Don: Serbian Journal of Electrical Engineering ISSN 1451-4869 (Scopus, DOAJ), 2017. pp. 59-64.

5. Kucheryavenko A.V. Suppression of the turbine radar effect signal in a pulse-Doppler radar // Engineering Bulletin of the Don, 2017, No. 4.

Kucheryavenko Alexander Valeryevich

Email: aleksandrk@sfedu.ru

South Federal University

Taganrog, Russian Federation

Keywords: turboprop component, glider component, micromovement, echo signal, spectrum,, radar, doppler

For citation: Kucheryavenko A.V. ALGORITHM FOR ADDING TURBOVINET EFFECT. Modeling, Optimization and Information Technology. 2019;7(1). Available from: https://moit.vivt.ru/wp-content/uploads/2019/01/Kucheryavenko_1_19_1.pdf DOI: 10.26102/2310-6018/2019.24.1.026 (In Russ).


Full text in PDF