МЕТОД ВЕРИФИКАЦИИ СИНТЕЗИРОВАННОЙ ФУНКЦИОНАЛЬНОЙ СТРУКТУРЫ ПОСРЕДСТВОМ ПОСТРОЕНИЯ ФИЗИЧЕСКОГО ПРИНЦИПА ДЕЙСТВИЯ ТЕХНИЧЕСКОЙ СИСТЕМЫ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

METHOD FOR VERIFICATION OF SYNTHESIZED FUNCTIONAL STRUCTURE ON BASE OF BUILDING A PHYSICAL OPERATION PRINCIPLE OF THE TECHNICAL SYSTEM

Korobkin D.M.   Fomenkov S.A.   Kolesnikov S.G.  

UDC 004.89
DOI: 10.26102/2310-6018/2019.25.2.010

  • Abstract
  • List of references
  • About authors

This paper proposes a developed method for verifying the synthesized functional structure of a technical system. The synthesized constructive functional structure is verified by building a physical operating principle of the vehicle based on a database of technical functions performed by physical effects. The constructive functional structure is a directed graph, the vertices of which are technical objects, and the edges are technical functions. Based on the stored relationships between technical objects, technical functions and physical effects, the constructive functional structure is transformed into a network structure of physical effects that needs to be checked for compatibility of the physical effects. Algorithms for verifying the compatibility of the effects of the physical effects, the structures and phases of the objects of the physical effects are developed. When forming a streaming functional structure, it is required to form a task for the synthesis of a physical operating principle. “Subject” (S) and “Object” (O) from the semantic structure of SAO, on the basis of which a technical need was formed, are defined as the initial input and final output effects of the required physical operating principle.

1. Polovinkin A.I. Metody inzhenernogo tvorchestva: ucheb. posobie / Polovinkin A.I.; VPI. - Volgograd, 1984. - 365 s.

2. Christensen, Clayton M.; Horn, Michael (2008), Disrupting class: how disruptive innovation will change the way the world learns, New York, New York, USA: McGraw-Hill, ISBN 978-0-07-159206-2.

3. Norman, Donald (1988), The Design of Everyday Things. New York: Basic Books. ISBN 978-0-465-06710-7

4. Litvin, SS (2004), New TRIZ-based tool—Function-oriented search (FOS). In: ETRIA conference TRIZ future, pp 505–509

5. Danilovskij, YU.E. i dr. (2015), Formirovanie novyh reshenij i razvitie izobretatel'skogo myshleniya na osnove spravochnika po nedostatkam. Izvestiya VolgGTU. Ser. Aktual'nye problemy upravleniya, vychislitel'noj tekhniki i informatiki v tekhnicheskih sistemah. - Volgograd, 2015. - № 14 (178). - S. 98-116.

6. Liubomirsky, A., Litvin S. (2003), Trends of engineering systems evolution, GEN3 Partners, February 2003. [Электронный ресурс]. URL: http://www.metodolog.ru/00767/00767.html

7. Anil Kumar Mukhopadhyaya (2013), Function Analysis System Technique (A Stimulating Tool). ISBN-10: 9381141886

8. Abramov, O.Y. (2015), TRIZ-Based Cause and Effect Chains Analysis vs Root Cause Analysis. Proceedings of the 11th TRIZfest-2015 International Conference. September 10-12, 2015, Seoul, South Korea. pp. 283-291.

9. Еfimov A.V. (2008), Metodika MPV analiza. [Elektronnyj resurs]. URL: http://www.metodolog.ru/01472/01472.html

10. Glazunov V.N. (2010), Tekhnologiya idej: ekspertnye sistemy "NOVATOR" i "EDISON". [Elektronnyj resurs]. URL: http://www.trizland.ru/trizba/pdfarticles/system_novator.pdf

11. Zaripova, V.M., Cyrul'nikov, Е.S., Kiselev, A.A. (2012), «Intellekt» dlya razvitiya navykov inzhenernogo tvorchestva. Alma mater (Vestnik vysshej shkoly). 2012. № 1. S. 58-61.

12. Al'tshuller, G.S. (2004), Tvorchestvo kak tochnaya nauka. 2 izd., dopoln. — Petrozavodsk: Skandinaviya.

13. Avtomatizaciya poiskovogo konstruirovaniya. /Pod red. A.I. Polovinkina. - M.: Radio i svyaz', 1981.-344 s.

14. Fomenkov, S.A., Davydov, D.A., Kamaev, V.A. (2004), Modelirovanie i avtomatizirovannoe ispol'zovanie strukturirovannyh fizicheskih znanij: monografiya - M.: Mashinostroenie-1, 2004. - 278 s.

15. Shabanov D.V., Korobkin D.M., Fomenkov S.A., Kolesnikov S.G. Metod izvlecheniya opisanij tekhnicheskih funkcij iz patentnyh tekstov. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. № 5 (215). S. 68-76

16. Korobkin D.M., Fomenkov S.A., Kolesnikov S.G., Al'-Hadsha F.A.H. Sintez i analiz fizicheskih principov dejstviya tekhnicheskih sistem s ispol'zovaniem setej Petri. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. № 8 (218). S. 83-88.

Korobkin Dmitry Mikhailovich
Candidate of Technical Sciences, Associate Professor
Email: dkorobkin80@mail.ru

Volgograd State Technical University

Volgograd, Russian Federation

Fomenkov Sergey Alekseevich
Doctor of Technical Sciences, Professor
Email: saf550@yandex.ru

Volgograd State Technical University

Volgograd, Russian Federation

Kolesnikov Sergey Grigorievich

Email: sk375@bk.ru

Volgograd State Technical University

Volgograd, Russian Federation

Keywords: functional structure, physical operation principle, technical functions, physical effects

For citation: Korobkin D.M. Fomenkov S.A. Kolesnikov S.G. METHOD FOR VERIFICATION OF SYNTHESIZED FUNCTIONAL STRUCTURE ON BASE OF BUILDING A PHYSICAL OPERATION PRINCIPLE OF THE TECHNICAL SYSTEM. Modeling, Optimization and Information Technology. 2019;7(2). Available from: https://moit.vivt.ru/wp-content/uploads/2019/05/KorobkinSoavtori_2_19_2.pdf DOI: 10.26102/2310-6018/2019.25.2.010 (In Russ).

581

Full text in PDF