АНАЛИЗ МЕТОДОВ МОДЕЛИРОВАНИЯ ТЕХНИЧЕСКИХ СИСТЕМ В СРЕДЕ MATLAB
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

ANALYSIS OF METHODS OF MODELING TECHNICAL SYSTEMS IN MATLAB

Bebikhov Y.V.   Semenov A.S.   Semenova M.N.   Yakushev I.A.  

UDC 519.876.2
DOI: 10.26102/2310-6018/2019.26.3.037

  • Abstract
  • List of references
  • About authors

The MatLab software package is considered from the point of view of a universal modeling environment for technical systems. The analysis of methods of mathematical, structural and physical modeling in MatLab using the library of blocks Simulink and application SimPowerSystems. For the study, an electromechanical system was chosen - a DC motor with independent excitation, as one of the most common for driving technological installations of cyclic action. With the help of a laboratory setup, a simulation model has been developed that allows you to evaluate, analyze and compare the results obtained during modeling with real data. To carry out the simulation, additional parameters of the DC motor were calculated, which include the active resistances and inductances of the armature windings and excitations, mutual induction, moment of inertia, design and time constants of the motor. Physical, structural and mathematical models are developed. The simulation results are obtained in the form of graphs of time dependences of the main engine parameters. A detailed analysis of the angular speed of rotation of the DC motor was made, since it is the main coordinate for regulation. Qualitative and quantitative characteristics of the transition process, such as control time, magnitude of overshoot, and the number of oscillations, were subject to assessment. During the evaluation and analysis of simulation results, the advantages and disadvantages of various methods of modeling technical systems in the MatLab software package were established. Conclusions are made about the universality of the MatLab environment for the possibilities of a detailed and accurate assessment of complex technical systems.

1. Lebedev S.K., Kolganov A.R. Regulyatory polozheniya sistem pozitsionirovaniya s dinamikoy besselya dlya elektromekhatronnykh moduley // Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. – 2015. – No. 6. – pp.41-47. DOI: 10.17588/2072- 2672.2015.6.041-047.

2. Gnezdov N.E., Lebedev S.K., Kolganov A.R. Structural and parametric synthesis of positioning systems of electromechatronic modules // 9th International Conference on Power Drives Systems (ICPDS). – 2016. – S.7756725. DOI: 10.1109/ICPDS.2016.7756725.

3. Radionov A.A., Karandaev A.S., Evdokimov A.S., Andryushin I.Yu., Gostev A.N., Shubin A.G. Matematicheskoe modelirovanie vzaimosvyazannykh elektromekhanicheskikh sistem nepreryvnoy podgruppy kletey prokatnogo stana. Chast' 1. Razrabotka matematicheskoy modeli // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika. – 2015. – Vol.15. – No. 1. – pp.59-73. DOI: 10.14529/power150108.

4. Radionov A.A., Karandaev A.S., Khramshin V.R., Evdokimov A.S., Andryushin I.Yu., Gostev A.N., Shubin A.G., Gasiyarov V.R. Matematicheskoe modelirovanie vzaimosvyazannykh elektromekhanicheskikh sistem nepreryvnoy podgruppy kletey prokatnogo stana. Chast' 2. Issledovanie dinamicheskikh nagruzok v universal'nykh kletyakh // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika. – 2015. – Vol.15. – No. 2. – pp.67-76. DOI: 10.14529/power150209.

5. Khramshin V.R., Radionov A.A., Karandaev A.S., Evdokimov S.A., Shubin A.G., Loginov B.M. Matematicheskoe modelirovanie vzaimosvyazannykh elektromekhanicheskikh sistem nepreryvnoy podgruppy kletey prokatnogo stana. Chast' 3. Issledovanie sposoba soglasovaniya lineynykh skorostey vertikal'nykh // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika. – 2016. – Vol.16. – No. 1. – pp.47-57. DOI: 10.14529/power160108.

6. Gasiyarov V.R., Radionov A.A., Maklakov A.S. Modelirovanie trekhurovnevogo preobrazovatelya chastoty s fiksirovannoy neytral'yu pri algoritme ShIM s udaleniem vydelennykh garmonik // Elektrotekhnicheskie sistemy i kompleksy. – 2017. – No. 1 (34). – pp.4-9. DOI: 10.18503/2311- 8318-2017-1(34)-4-9.

7. Shevyrev Yu.V., Morgachev D.A. Issledovanie elektromagnitnoy sovmestimosti chastotno-reguliruemogo elektroprivoda burovoy ustanovki i istochnika elektroenergii soizmerimoy moshchnosti // Vestnik YuzhnoUral'skogo gosudarstvennogo universiteta. Seriya: Energetika. – 2015. – Vol.15. – No. 2. – pp.25-33. DOI: 10.14529/power150204.

8. Fashchilenko V.N. Reguliruemyy elektroprivod nasosnykh i ventilyatornykh ustanovok gornykh predpriyatiy. – M.: Gornaya kniga, 2011. – 84 p.

9. Lyakhomskiy A.V., Fashchilenko V.N. Avtomatizirovannyy elektroprivod mashin i ustanovok gornogo proizvodstva. Chast' 1. Avtomatizirovannyy elektroprivod mekhanizmov tsiklicheskogo deystviya. – M.: Gornaya kniga, 2014. – 477 p.

10. Semenov A.S., Khubieva V.M., Kharitonov Y.S. Mathematical modeling of static and dynamic modes DC motors in software package MATLAB // International Russian Automation Conference (RusAutoCon). – 2018. DOI: 10.1109/RUSAUTOCON.2018.8501666.

11. Semenov A.S., Egorov A.N. Osobennosti matematicheskogo modelirovaniya sistem elektroprivodov tekhnologicheskikh ustanovok gornykh predpriyatiy // Karotazhnik. – 2018. – No. 11 (293). – pp.85-99.

12. Semenov A.S., Kharitonov Ya.S., Egorov A.N. Razrabotka matematicheskoy modeli elektromagnitnogo privoda s sistemoy upravleniya stabilizatsii proizvoditel'nosti pitatelya // Trudy NGTU im. R.E. Alekseeva. – 2018. – No. 2 (121). – pp.123-131.

13. Bebikhov Yu.V., Kugusheva N.N., Khubieva V.M., Semenova M.N., Yakushev I.A. Razrabotka universal'noy matematicheskoy modeli sistemy elektrosnabzheniya uchastka promyshlennogo predpriyatiya // Estestvennye i tekhnicheskie nauki. – 2018. – No. 12 (126). – pp.387-394.

14. Semenov A.S., Yakushev I.A., Egorov A.N. Matematicheskoe modelirovanie tekhnicheskikh sistem v srede MATLAB // Sovremennye naukoemkie tekhnologii. – 2017. – No. 8. – pp.56-64. DOI: 10.17513/snt.36780.

15. D'yakonov V.P. MATLAB R2006/2007/2008 + SIMULINK 5/6/7. Osnovy primeneniya. Uchebnoe posobie. – M.: SOLON-Press, 2008. – 800 p.

16. Chernykh I.V. Modelirovanie elektrotekhnicheskikh ustroystv v MATLAB. SimPowerSystems i Simulink. Uchebnoe posobie. – M.: DMK Press, 2007. – 288 p.

17. Semenov A.S. Modelirovanie avtomatizirovannogo elektroprivoda. – M.: Izdatel'stvo «Sputnik+», 2012. – 60 p.

18. Semenov A.S. Programma MATLAB. – M.: Izdatel'stvo «Sputnik+», 2012. – 40 p

19. Semenov A.S., Khubieva V.M., Kharitonov Ya.S. Matematicheskoe modelirovanie staticheskikh i dinamicheskikh rezhimov dvigatelya postoyannogo toka v pakete programm MATLAB // Prom-Inzhiniring: trudy IV mezhdunarodnoy nauchno-tekhnicheskoy konferentsii. – Chelyabinsk: Izdatel'stvo YuUrGU, 2018. – pp.381-385.

20. Semenov A.S., Khubieva V.M., Petrova M.N. Matematicheskoe modelirovanie rezhimov raboty dvigatelya postoyannogo toka v srede MATLAB // Fundamental'nye issledovaniya. – 2015. – No. 10-3. – pp.523- 528.

21. Anosov V.N., Naumov V.V., Kotin D.A. Teoriya avtomaticheskogo upravleniya. – Novosibirsk: Izdatel'stvo NGTU, 2016. – 68 p.

22. Bolgov I., Bolgova V. Detailed simulation model of the two-phase brushless DC motor designed for VFD integration // 57th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). – 2016. – No. 57. – S.7763154. DOI: 10.1109/RTUCON.2016.7763154.

23. Skovranek T., Mojžišová A., Pócsová J. MATLAB: The ultimate tool for teaching process control oriented courses // 17th International Carpathian Control Conference (ICCC). – 2016. DOI: 10.1109/CarpathianCC.2016.7501189.

24. Mandal A., Alom A., Khan K.A., Pal S., De A. MATLAB-graphical user interface (GUI) to study PV module characteristics // International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). – 2017. DOI: 10.1109/ICECDS.2017.8389879.

25. Durak U., Öztürk A., Katircioglu M. Simulation Deployment Blockset for MATLAB/Simulink // Symposium on Theory of Modeling and Simulation (TMS-DEVS). – 2016. DOI: 10.23919/TMS.2016.7918818.

Bebikhov Yuri Vladimirovich
Candidate of Physical and Mathematical Sciences
Email: bebikhov.yura@mail.ru

North-Eastern Federal University named after M.K. Ammosov, Polytechnic Institute (branch) in Mirny

Mirny, Republic of Sakha (Yakutia), Russian Federation

Semenov Alexander Sergeevich
Candidate of Physical and Mathematical Sciences, Associate Professor
Email: sash-alex@yandex.ru

North-Eastern Federal University named after M.K. Ammosov, Polytechnic Institute (branch) in Mirny

Mirny, Republic of Sakha (Yakutia), Russian Federation

Semenova Maria Nikolaevna

Email: mariya_semyonova86@mail.ru

North-Eastern Federal University named after M.K. Ammosov, Polytechnic Institute (branch) in Mirny

Mirny, Republic of Sakha (Yakutia), Russian Federation

Yakushev Ilya Anatolievich
Candidate of Physical and Mathematical Sciences
Email: yakushevilya@mail.ru

North-Eastern Federal University named after M.K. Ammosov, Polytechnic Institute (branch) in Mirny

Mirny, Republic of Sakha (Yakutia), Russian Federation

Keywords: modeling of technical systems, matlab, simulink, dc motor, angular rotation speed, transient, error

For citation: Bebikhov Y.V. Semenov A.S. Semenova M.N. Yakushev I.A. ANALYSIS OF METHODS OF MODELING TECHNICAL SYSTEMS IN MATLAB. Modeling, Optimization and Information Technology. 2019;7(3). Available from: https://moit.vivt.ru/wp-content/uploads/2019/09/BebihovSoavtori_3_19_1.pdf DOI: 10.26102/2310-6018/2019.26.3.037 (In Russ).

1105

Full text in PDF