Целевой чат-бот на основе машинного обучения
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018


Nguyen T.T.   Shcherbakov M.V.  

UDC 004.89
DOI: 10.26102/2310-6018/2020.29.2.041

  • Abstract
  • List of references
  • About authors

Nowadays chatbots are becoming very popular in many areas, such as business, banking, healthcare, study, travel tips, etc. The popularity of messaging platforms such as Telegram, Messenger, Whatsapp, and others has made chatbots not only popular but also become a trend in the future. Since the end of December 2019, the onset of the COVID-19 pandemic has brought about a major global health crisis. Therefore, it is extremely important to provide information about the epidemic to all people. Many governments and organizations have launched chatbots to inform the public about COVID-19. However, these chat rules are limited as they understand a limited set of questions entered by users. Thereby, creating a chatbot based on machine learning for coronavirus information is an urgent task. The purpose of the study is the development of a chatbot for searching for information about COVID-19 coronavirus infection. The method of designing and developing a chatbot on the RASA framework, as well as testing of the developed prototype, are described. Three chatbot models were created: the baseline model (B), the baseline model with synonyms (BS), and the baseline model with synonyms and noises (BSS). The effectiveness of three models was evaluated based on the following indicators: accuracy, precision, and F-measure. The analysis results showed that the BS and BSS models are better than the B model.

1. TOP 10 reasons why everyone needs chatbots in social networks. Available at: https://ideadigital.agency/ru/chat-bot/ (accessed 22.03.2020).

2. Rasa Stack. Available at: https://legacy-docs.rasa.com/docs/get_started_step1/ (accessed 22.12.2019).

3. Yan M., Castro P., Cheng P., Ishakian V. Building a Chatbot with Serverless Computing. 2016 Proceedings of the 1st International Workshop on Mashups of Things and APIs (MOTA ’16). 2016

4. Jyri L., Niko M., Tommi M. Case Study: Building a Serverless Messenger Chatbot. Current Trends in Web Engineering. 2018: 75-86.

5. Handoyo E., M. Arfan, Y.A.A. Soetrisno, M. Somantri, A. Sofwan, E.W. Sinuraya. Ticketing Chatbot Service using Serverless NLP Technology. 2018 5th International Conference on Information Technology, Computer, and Electrical (ICITACEE). 2018.

6. COVID-19. Available at: https://ru.wikipedia.org/wiki/COVID-19 (accessed 22.04.2020).

7. Rospotrebnadzor called a high probability of a second wave of COVID-19 in the fall. Available at: https://www.rbc.ru/society/01/05/2020/5eac02069a79474fc26b1648 (accessed 01.05.2020)

8. System event notifications (Webhooks). Available at: https://www.unisender.com/ru/support/api/common/sistema-uvedomlenij-o-sobytiyah-webhooks/ (accessed 22.02.2020).

9. Rasa NLU: Language Understanding for Chatbots and AI assistants. Available at: https://rasa.com/docs/rasa/nlu/about/ (accessed 22.02.2020).

10. Markdown. Available at: https://www.markdownguide.org/ (accessed 18.02.2020).

11. The Rasa Core Dialogue Engine. Available at: https://rasa.com/docs/rasa/core/about/ (accessed 23.02.2020).

12. Coronavirus COVID19 API. Available at: https://documenter.getpostman.com/view/10808728/SzS8rjbc?version=latest (accessed 15.03.2020).

13. Coronavirus. Questions and Answers. Available at: https://covid19.rosminzdrav.ru/ (accessed 25.04.2020).

14. Disease caused by coronavirus (COVID-19): Frequently asked Questions. Available at: https://www.who.int/ru/emergencies/diseases/novel-coronavirus-2019/advice-for-public/q-acoronaviruses (accessed 25.04.2020).

15. A. Zheng. Evaluating Machine Learning Models. O'Reilly Media, Inc. 2015.

Nguyen Thi mai Trang

Email: m.trang91@gmail.com

Volgograd State Technical University

Volgograd, Russian Federation

Shcherbakov Maxim Vladimirovich
Dr. Tech. Sci.
Email: maxim.shcherbakov@gmail.com

Volgograd State Technical University

Volgograd, Russian Federation

Keywords: chat bot, natural language processing, serverless, intent, entities, rasa, covid-19

For citation: Nguyen T.T. Shcherbakov M.V. A GOAL-ORIENTED CHATBOT BASED ON MACHINE LEARNING. Modeling, Optimization and Information Technology. 2020;8(2). Available from: https://moit.vivt.ru/wp-content/uploads/2020/05/NguyenShcherbakov_2_20_1.pdf DOI: 10.26102/2310-6018/2020.29.2.041 (In Russ).


Full text in PDF