Позиционирование в трехмерном пространстве внутри помещений по данным Bluetooth-маяков
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

3D indoor positioning system based on Bluetooth beacons

idGrinyak V.M.

UDC 004.8
DOI: 10.26102/2310-6018/2020.30.3.023

  • Abstract
  • List of references
  • About authors

This paper devoted to research of indoors navigation problems under poor or insufficient quality of satellite navigational data environment. The problem of object positioning in 3D space by Bluetooth devices located indoors forming a multi-position tracking system is considered in this research. Emphasized that in order to succeed for such system it is required to pre-estimate distinctive accuracy. The proposed model interpretation of the positioning problem as the system of linear equations. The classic model interpretation for method of least squares is used for resolution. General problem of linearization around reference resolution is the locality of its features. There are three concepts of problems solvability, such as fundamental solvability (observability), solvability in conditions of instrumental measurement errors and solvability under conditions of finite accuracy of computation on a computer. The first aspect of solvability is interpreted by the completeness of the rank of the corresponding system of linear algebraic equations, the second and third ones represents by the conditionality of the problem and the convergence of the iterative estimation procedure. The conducted experiments show that for the positioning problem the attributes of the linearized model are accurate enough to represent the original nonlinear problem. Such interpretation allows to build theoretical accuracy estimation priors for object coordinates evaluations and to identify the areas with insufficient positioning accuracy. In this paper there are results of expected accuracy evaluation for various system patterns with full-scale experiments proving the theoretical calculations. Experiments for problems with using SKYLAB Beacon VG01 Bluetooth transmitters and smartphone HUAWEI WAS-LX1 are presented and confirmed that math model with linear approximation defined by authors is usable for solving indoors navigation problems using Bluetooth signal. So, for good enough quantity and appropriate location of the tracks the achievable positioning accuracy could be as good as 0.2-0.3 meters for all three coordinates. Such accuracy allows to navigate small hovering objects such as drones. In general, it looks promising to use Bluetooth trackers for solving positioning problems for indoors environments.

1. International Conference on Indoor Positioning and Indoor Navigation, available at: http://ipin-conference.org/ (date of access 01.06.2020).

2. Shebshaevich V.S. Setevye sputnikovye radionavigacionnye sistemy (Network satellite radio navigation systems), Moscow, Radio i svjaz', 1993.

3. Shchekotov M., Kashevnik A. Comparative Analysis of Indoor Positioning Systems for Smartphones. Proc. FRUCT Conf. 2012;(4):459-471.

4. Zhelamskii M.V. Features of the Construction of a Positioning Field for Local Navigation in Enclosed Spaces. Measurement Techniques. 2014;57(7):791-799.

5. Namiot D., Makarychev I. On the alternative model of location marking on social networks. International Journal of Open Information Technologies. 2020;8(2):74-90.

6. Assur O.S., Filaretov G.F. Razrabotka kompleksnogo metoda pozicionirovanija ob’ektov po dannym besprovodnyh setej Wi-Fi i ustrojstv BLE (Bluetooth Low Energy). Izvestija Instituta Inzhenernoj Fiziki. 2015;(2):2-10.

7. Murashko I.A., Khrabrov D.E. Metodika lokal'nogo pozicionirovanija na osnovanii Wi-Fiseti universiteta (Methods of local positioning based on Wi-Fi-network of university). Vesnіk Grodzenskaga dzjarzhaўnaga ўnіversіtjeta іmja Jankі Kupaly. Seryja 2: Matjematyka. Fіzіka. Іnfarmatyka, Vylіchal'naja tjehnіka і kіravanne. 2015;(2):119-127.

8. Bolotova S. Yu., Zonov A.V., Tutin A.P. Indoor Navigation in Mobile Applications. Programmnaya injeneriya. 2018;9(1):29-34.

9. Davidson P., Kirkko-Jaakkola M., Collin J., Takala J. Navigacionnyj algoritm s ispol'zovaniem planov zdanij i dannyh avtonomnyh datchikov (Navigation Algorithm Combining Building Plans with Autonomous Sensor Data). Gyroscopy and Navigation. 2015;(3):188-196.

10. Kronenwett N., Ruppelt J., Trommer G.F. Motion Monitoring based on a Finite State Machine for Precise Indoor Localization. Gyroscopy and Navigation. 2017;(3):190-199.

11. Emel'yantsev G.I., Stepanov A.P., Blazhnov B.A. O reshenii navigacionnoj zadachi dlja letatel'nyh apparatov s ispol'zovaniem inercial'nogo modulja na mikromehanicheskih datchikah i nazemnyh radioorientirov (Solution of Aircraft Navigation Problem using MEMS IMU and Ground Radio Sources). Gyroscopy and Navigation (Giroskopija i navigacija). 2017;(1):3-17.

12. Anbarasu B., Anitha G. Indoor Scene recognition for Micro Aerial Vehicles Navigation using Enhanced SIFT-ScSPM Descriptors. The Journal of Navigation. 2020;73(1): 37-55.

13. Tsai H.-Y., Hishiyama R., Kuwahara Y., Leiri Y. Vision-Based Indoor Positioning (VBIP) - an Indoor AR Navigation System with a Virtual Tour Guide. Lecture Notes in Computer Science. 2019;11677 LNCS: 96-109.

14. Gmar D.V., Dyuldina K.I., Snopko S.I., Shakhgeldyan K.J., Kryukov V.V. Indoor navigation service based on Wi-Fi positioning. RPC 2017 - Proceedings of the 2nd RussianPacific Conference on Computer Technology and Applications. 2017:68-71.

15. Stepanov O.A. Map-aided navigation, indoor navigation, and fingerprint-based positioning. Common features and differences. 23rd Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2016 - Proceedings 23. 2016:568-571.

16. Voronov R.V., Malodushev S.V. Dinamicheskoe sozdanie kart urovnja Wifi-signalov dlja sistem lokal'nogo pozicionirovanija (Dynamic Creation Of Wi-Fi-Signal Level Maps For Location Systems). Systems and Means of Informatics. 2014;(1):80-92.

17. Saleh H.M., Aleksandrov D.V. Indoor positioning using WI-FI-access points. Informatsionno-Izmeritelniye i Upravlyaushie Systemy. 2012;10(7):29-36.

18. Bulychev V.Y., Bulychev Y.G., Ivakina S.S., Nasenkov I.G., Nikolas P.I., Chepel E.N. Substantiation of methods for optimal estimation of target motion parameters in triangulation location systems. Journal of Computer and Systems Sciences International. 2015;54(4):593-608.

19. Vasiliev K.K., Bobkov A.V. Dinamicheskoe ispol'zovanie orientirov dlja ocenki koordinat avtonomnyh neobitaemyh podvodnyh apparatov (Dynamic use landmarks for coordinates estimation). Informatsionno-Izmeritelniye i Upravlyaushie Systemy. 2017;(12):11-14.

20. Martynyuk M.V., Generalov A.V., Naumov S.S., Zaletnov S.E., Dmitriev D.V., Timofeeva O.P. Development of A System Of Local Acoustic Positioning Based On A Personal Computer. Measurement Techniques. 2016;(10):1179-1184.

21. Grinyak V.M., Devyatisilnyi A.S. Dynamic adjustment of multiposition observing system with respect to trajectory measurements. Journal of Computer and Systems Sciences International. 1999;38(1):124-130.

22. Grinyak V.M., Devyatisilny A.S., Shurygin A.V. Feasibility Study of Indoor Navigation with Bluetooth Beacons. Informatsionniye Tehnologii. 2018;24(9):610-617.

23. Grinyak V.M., Devyatisilnyi A.S., Lulko V.I., Tsibanov P.A. Indoor positioning system based on Bluetooth beacons. Modelirovanie, Optimizacija i Informacionnye Tehnologii. 2018;6(2):132-143.

24. Grinyak V.M., Grinyak T.M., Tsibanov P.A. Indoor positioning system based on Bluetooth beacons. Тhe Territory of New Opportunities. The Herald of Vladivostok State University of Economics. 2018;10(2):137-147.

25. Popp M., Prophet S., Scholz G., Trommer G.F. A novel guidance and navigation system for MAVs capable of autonomous collision-free entering of buildings. Gyroscopy and navigation. 2015;(3):3-17.

26. Motley A.J., Keenan J.M.P. Personal communication radio coverage in buildings at 900 MHz and 1700 MHz. Electronics Letters. 1988;24(12):763-764.

27. Grinyak V.M. Spatial navigation problem under incomplete measuring information conditions. Dalnevostochnyi matematicheskyi jurnal. 2000;1(1):93-101.

28. Grinyak V.M., Grynyak T.M., Ivanenko Y.S. Dinamicheskaja vystavka mnogopozicionnoj sistemy nabljudenija (Dynamic Adjustment of Multiposition Observing System). Modelirovanie, Optimizacija i Informacionnye Tehnologii. 2017;(3): 2.

29. Malyshev A.N. Vvedeniye v vychislitelnuyu lineynuyu algebru (Introduction to computing linear algebra), Novosibirsk, Nauka, 1991.

30. Kryzhko I.В., Glushakova T.N. On solvability of the inverse trajectory problems. Vestnik voronejskogo gosudarstvennogo universiteta. Seriya: Sistemnyi analis i informatsionniye tehnologii. 2007;(1):148-151.

31. SKYLAB Low Power Consumption Waterproof Bluetooth beacon -VG02. URL: http://www.skylabmodule.com/skylab-low-power-consumption-waterproof-bluetootheddystone-nordic-chipset-beacon-itag-bluetooth-beacon-vg02/ (date of access 01.06.2020)

32. Dulimarta H.S., Jain A.K. Mobile robot localization in indoor environment. Pattern Recognition. 1997;30(1):99-111.

33. Ranganathan P., Hayet J.B., Devy M., Hutchinson S., Lerasle F. Topological navigation and qualitative localization for indoor environment using multi-sensory perception. Robotics and Autonomous Systems. 2002;41(2-3):137-144.

34. Barabanova L.P. On the geometric factor of difference range positioning with a minimal number of beacons. Journal of Computer and Systems Sciences International. 2005;44(3):413-420.

Grinyak Victor M.
Doctor of Technical Sciences, Associate Professor
Email: victor.grinyak@gmail.com

ORCID |

Federal State State-financed Educational Institution of Higher Education “Vladivostok State University of Economics and Service”

Vladivostok, Russian Federation

Keywords: information system, indoor positioning, beacons, bluetooth, location, least squares method

For citation: Grinyak V.M. 3D indoor positioning system based on Bluetooth beacons. Modeling, Optimization and Information Technology. 2020;8(3). Available from: https://moit.vivt.ru/wp-content/uploads/2020/08/Grinyak_3_20_1.pdf DOI: 10.26102/2310-6018/2020.30.3.023 (In Russ).

878

Full text in PDF