Оценка механических свойств стенок кровеносных сосудов на основе использования эндоваскулярной оптической когерентной эластографии
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

High-precision evaluation of stress-related properties of blood vessel walls using intravascular optical coherence elastography with forward- view probe

Frolov S.V.   Potlov A.Y.   Frolova T.A.  

UDC 616.1–073.53
DOI: 10.26102/2310-6018/2020.31.4.001

  • Abstract
  • List of references
  • About authors

According to the World Health Organization, 3.2% of the world's adult population has cerebral aneurysms. A ruptured aneurysm is often fatal, which makes cerebral aneurysm one of the most dangerous pathological conditions. Methods widely used in real clinical practice for assessing the probability of a cerebral aneurysm rupture based on the analysis of risk factors, its geometry, and individualized mathematical modeling of cerebral hemodynamics lead to contradictory results. The risk of cerebral aneurysm rupture can be estimated based on instrumental research methods to assess the biomechanical properties of the vessel walls. A method for evaluation of the shear modulus for the large blood vessel walls is described. Structural images of the investigated part of the blood vessel wall with aneurysm are sequentially obtained using intravascular optical coherence tomography system for at least several cardiocycles. B-scans correspondent to diastole and shear deformation stages between systole and diastole are taken for the evaluation from a sequence of structural images. The pulse wave is considered to be the only deforming stimulus. The surface area of the deforming force is considered to be equal to the scanning area of the IOCT system. B-scans’ profiles are processed and plotted according to the average truncated level of the interference signal intensity. These profiles are divided into overlapping blocks. Shear deformation is estimated for overlapping blocks by the abscissa projection of the average displacement vector. The dimensions of the deformed region are to be equal to corresponding coherence probing depth. Shear modulus in the point of interest of the blood vessel wall is calculated using the classical formula and verified using known values of the Young's modulus and Poisson's ratio. The proposed method can be used in real clinical practice, in particular, in neurosurgical tasks of choosing optimal approaches to the treatment of cerebral aneurysms and technical means for their implementation.

1. Hepburn, M.S., Wijesinghe, P., Chin, L., Kennedy, B.F., "Analysis of spatial resolution in phase-sensitive compression optical coherence elastography," Biomedical Optics Express. 2019;10(3):1496–1513. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-3-1496&id=406839 (дата обращения: 02.11.2020).

2. Sindeev S., Arnold P.G., Frolov S., Prothmann S., Liepsch D., Balasso A., Berg P., Kaczmarz S., Kirschke J.S. Phase-contrast MRI versus numerical simula-tion to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment . PLoS ONE. 2018;13(1), art.No. e0190696. Доступно по: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190696 DOI: 10.1371/journal.pone.0190696 (дата обращения: 02.11.2020).

3. Frolov S.V., Sindeev S.V., Liepsch D., Balasso A. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.Technology and Healthcare. 2016;24(3):317-333. DOI: 10.3233/THC-161132.

4. Sindeev, S., Kirschke, J.S., Prothmann, S., Frolov, S., Liepsch, D., Berg, P., Zim-mer, C., Friedrich, B. Evaluation of flow changes after telescopic stenting of a gi-ant fusiform aneurysm of the vertebrobasilar junction . Biomedical engineering online. 2019;18(1):1-15. Art. No.82. Доступно по: https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0699-1 DOI: 10.1186/s12938-019-0699-1 (дата обращения: 02.11.2020).

5. Frolov S.V., Sindeev S.V., Kirschke J.S., Arnold P., Prothmann S., Liepsch D., Balasso A., Potlov A., Larrabide I., Kaczmarz CFD and MRI studies of hemo-dynamic changes after flow diverter implantation in a patient-specific model of the cerebral artery. Experiments in Fluids. 2018;59(11), Art. No.176. Доступно по: https://link.springer.com/article/10.1007/s00348-018-2635-8?shared-article-renderer DOI: 10.1007/s00348-018-2635-8 (дата обращения: 02.11.2020).

6. Larin, K.V., Sampson, D.D.,"Optical coherence elastography – OCT at work in tissue biomechanics," Biomedical Optics Express. 2017;8(2):1172–1202. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-8-2-1172&id=357746 (дата обращения: 02.11.2020).

7. Leartprapun, N., Iyer, R.R., Mackey, C.D., Adie, S.G., "Spatial localization of mechanical excitation affects spatial resolution, contrast, and contrast-to-noise ratio in acoustic radiation force optical coherence elastography," Biomedical Optics Express. 2019;10(11):5877–5904. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-11-5877&id=422553 (дата обращения: 02.11.2020).

8. Frolov, S.V., Potlov A.Y., Frolovа, T.A., Proskurin S.G.,"Compression elastography and endoscopic optical coherence tomography for biomechanical properties evaluation of cerebral arteries walls with aneurysm and their phantoms," AIP Conference Proceedings. 2140, 020020 (2019). DOI: 10.1063/1.5121945.

9. Miyazawa, A., Makita, S., Li, E., Yamazaki, K., Kobayashi, M., Sakai, S., Yasuno, Y., "Polarization-sensitive optical coherence elastography," Biomedical Optics Express. 2019;10(10): 5162–5181. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-10-5162&id=418863 (дата обращения: 02.11.2020).

10. Nguyen,T.M., Arnal, B., Song, S., Huang, Z. Wang, R.K., O’Donnell, M.,"Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography," Journal of Biomedical Optics. 2015;20(1),016001. Доступно по: https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-20/issue-01/016001/Shear-wave-elastography-using-amplitude-modulated-acoustic-radiation-force-and/10.1117/1.JBO.20.1.016001.full?SSO=1 (дата обращения: 02.11.2020).

11. Wang, S, Larin, K.V.,"Optical coherence elastography for tissue characterization: a review," Journal of Biophotonics. 2015;8(4):279–302. Доступно по: https://onlinelibrary.wiley.com/doi/full/10.1002/jbio.201400108 (дата обращения: 02.11.2020).

12. Frolov, S.V., Potlov, A.Yu., Sindeev, S.V.," Selection of flow-diverter stent models using optical coherence tomography and mathematical modeling of hemodynamics," Biomedical Engineering. 2017;51(6):381–384. DOI: 10.1007/s10527-018-9754-7.

13. Zaitsev, V.Y., Matveev, L.A., Matveyev, A.L., Sovetsky, A.A., Shabanov, D.V., Ksenofontov, S.Y., Gelikonov, G.V., Baum, O.I., Omelchenko, A.I., Yuzhakov, A.V.,"Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains," Laser Physics Letters. 16(6), 065601 (2019). Доступно по: https://iopscience.iop.org/article/10.1088/1612-202X/ab183c (дата обращения: 02.11.2020).

14. Potlov A.Yu., Frolov S.V., Proskurin S.G. Young's modulus evaluation for blood vessel equivalent phantoms using optical coherence elastography. Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine – Proceedings of SPIE. 2019;11065, art. No. 110650X. DOI: 10.1117/12.2523237

15. Frolov, S.V., Potlov, A.Yu.,"An Endoscopic Optical Coherence Tomography System with Improved Precision of Probe Positioning," Biomedical Engineering. 2019;53(1):6–10. DOI: doi.org/10.1007/s10527-019-09866-4.

16. Potlov A.Y., Frolov S.V., Proskurin S.G. An algorithm for speckle noise reduction in endoscopic optical coherence tomography structural imaging. Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine – Proceedings of SPIE. 2019;11065, art. No. 110650W. DOI: 10.1117/12.2523236.

17. Zvietcovich, F., Ge, G.R., Mestre, H., Giannetto, M., Nedergaard, M., Rolland, J.P., Parker, K.J., "Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography," Biomedical Optics Express. 2019;10(7):3699–3718. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-7-3699&id=414934 DOI: 10.1364/BOE.10.003699 (дата обращения: 02.11.2020).

Frolov Sergei Vladimirovich
PhD, Professor

Tambov State Technical University

Tambov, Russian Federation

Potlov Anton Yurievich
PhD in Engineering Science, Docent

Tambov State Technical University

Tambov, Russian Federation

Frolova Tatiana Anatolievna
PhD in Engineering Science, Docent

Tambov State Technical University

Tambov, Russian Federation

Keywords: compression elastography, intravascular applications, optical coherence tomography, forward-view probe, high-precision positioning, coherence probing depth, shear modulus, displacement, pulse wave, cerebral aneurysm

For citation: Frolov S.V. Potlov A.Y. Frolova T.A. High-precision evaluation of stress-related properties of blood vessel walls using intravascular optical coherence elastography with forward- view probe. Modeling, Optimization and Information Technology. 2020;8(4). Available from: https://moitvivt.ru/ru/journal/pdf?id=837 DOI: 10.26102/2310-6018/2020.31.4.001 (In Russ).

496

Full text in PDF