МОДЕЛИ КАНАЛОВ ДЛЯ БЕСПРОВОДНЫХ СИСТЕМ СВЯЗИ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

THE MODELS OF CHANNELS FOR WIRELESS SYSTEMS OF COMMUNICATION

Zhulyabin D.Y.  

UDC 621.396
DOI:

  • Abstract
  • List of references
  • About authors

In the paper the analysis of the peculiarities of the propagation of signals in wireless-water communication channels is carried out. The patterns of losses in space are given. The role of fading from the point of view of efficiency of signal transmission is specified.

1. Goldenberg L.M., Matyushkin B.D., Polyak M.N. - M. / Digital Signal Processing: Reference. Radio and Communications, 1985.

2. Lvovich I.Ya., Preobrazhensky A.P., Golovinov S.O. Simulator layout of the wire channel / Bulletin of the Voronezh State technical university. 2008.V. 4. No. 9. P. 34-37.

3. Golovinov S.O., Lvovich I.Ya., Preobrazhensky A.P. Development satellite data path simulator // Bulletin of the Voronezh State Technical University. 2009.V. 5. No. 4. P. 214-217

4. Zyuko A. G., Klovsky D. D., Korzhik V. I., Nazarov M. V., Theory electric communication / Ed. D. D. Klovsky. - Tutorial for Universities. - M.: Radio and Communications, 1999.432 p.

5. Ed. Mazora Yu.L., Machusky E.A., Pravda V.I. Radio engineering. - Encyclopedia. - M.: Publishing House Dodeka-XXI, 2002. - S. 488. - 944 p.

6. Prokis J. Digital Communications. - Per. from English // Ed. D. D. Klovsky. - M .: Radio and communications, 2000. 800 p.

7. Sklyar B. Digital communication. Theoretical Foundations and Practical application. - Per. from English - M.: Williams Publishing House, 2003.1104 p.

8. Petrus, P., Reed, J., Rappaport, T .: Geometrically Based Statistical Channel Model for Macrocellular Mobile Environments. In: IEEE Proc. GLOBECOM, pp. 1197-1201 1996.

9. Rossi, J., Levy, A.: A ray model for decimetric radiowave propagation in an urban area. Radio Science 27(6), 971–979 1992.

10. Valenzuela, R.: A ray tracing approach to predicting indoor wireless transmission. In: IEEE 43rd Vehicular Technology Conference, pp. 214– 218 1993.

11. Lvovich Ya.E., Lvovich I.Ya., Preobrazhensky A.P. Problem solving estimates of the scattering characteristics of electromagnetic waves on diffraction structures during their design / Bulletin Voronezh Institute of High Technologies. 2010. No. 6. S. 255-256.

12. Lvovich Ya.E., Lvovich I.Ya., Preobrazhensky A.P., Golovinov S.O. The study of optimization methods in the design of systems radio communications / Theory and technique of radio communications. 2011. No. 1. S. 5-9.

13. Lvovich Ya.E., Lvovich I.Ya., Preobrazhensky A.P., Golovinov S.O. Development of a computer-aided design system Wireless Communication Systems / Telecommunications. 2010. No. 11. S. 2-6.

14. Lvovich Ya.E., Lvovich I.Ya., Preobrazhensky A.P., Golovinov S.O. Study of ray tracing in design Modeling, optimization and information technology. Scientific journal No. 1 (4) http://moit.vivt.ru/ 2014 wireless communication systems / Information technology. 2011. № 8.P. 40-42.

15. Bajwa, A., Parsons, J .: Large area characterization of urban UHF multipath propagation and its relevance to the performance bounds of mobile radio systems. IEE Proceedings on Communications, Radar and Signal Processing 132 (2 Part F), 99-106 1985

16. Blanz, J., Klein, A., Mohr, W.: Measurement-based parameter adaptation of wideband spatial mobile radio channel models. In: IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, 1996., vol. 1 1996

17. Erceg, V., Hari, K. V. S., Smith, M., Baum, D., Sheikh, K., Tappenden, C., Costa, J., Bushue, C., Sarajedini, A., Schwartz, R., Branlund, D., Kaitz, T., D., T.: Channel Models for Fixed Wireless Applications. IEEE 802.16 Standards 2001

18. Maeyama, T., Ikegami, F., Kitano, Y.: Analysis of mountain-reflected signal strength in digital mobile radio communications. IEICE Transactions on Communications 76(2), 98–102 1993

19. Michelson, D., Erceg, V., Greenstein, L.: Modeling diversity reception over narrowband fixed wireless channels. In: IEEE MTT-S Symposium on Technologies for Wireless Applications, pp. 95–100 1999

20. Moriyama, E., Iwama, T., Saruwatari, T.: Experimental investigation of 1.5 GHz, 2.3 GHz and 2.6 GHz band land mobile radio propagation in urban and rural areas . In: IEEE Vehicular Technology Conference, pp. 311–315 1989

21. Rappaport, T., Seidel, S., Singh, R.: 900-MHz multipath propagation measurements for U.S. digital cellular radiotelephone. IEEE Transactions on Vehicular Technology 39, 132–139 (1990)

22. Sousa, E., Jovanovic, V., Daigneault, C.: Delay spread measurements for the digital cellular channel in Toronto. IEEE Transactions on Vehicular Technology 43(4), 837–847 1994.

23. Y. Okumura E. Ohmori, T.K., Fukua, K.: Field strength and its variability in uhf and vhf land-mobile radio service. Review Electronics Communication Lab 16(9) 1968

24. Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology 29(3), 317–325

25. Seidel, S., Rappaport, T., Jain, S., Lord, M., Singh, R.: Path loss, scattering and multipath delay statistics in four european cities for digital cellular and microcellular radiotelephone. Vehicular Technology, IEEE Transactions on 40(4), 721 –730 1991

26. Paulraj, A.J., Nabar, R., Gore, D.: Introduction to space-time wireless communications. Cambridge University Press 2003

27. Williams, J., Jakes, W.: Microwave mobile communications. Wiley-IEEE Press 1974

28. Rappaport, T.: Wireless communications: principles and practice. Prentice Hall PTR, New Jersey, USA (2002)

29. Lee,W.: Mobile communications engineering. McGraw-Hill, Inc. New York, NY, USA (1982)

30. de Weck, J., Merki, P., Lorenz, R.: Power delay profiles measured in mountainous terrain [radiowave propagation]. In: IEEE 38th Vehicular Technology Conference, pp. 105–112 1988

31. Adachi, F., Feeney, M., Parsons, J., Williamson, A.: Crosscorrelation between the envelopes of 900 MHz signals received at a mobile radio base station site. In: IEE Proceedings F Communications, Radar and Signal Processing, vol. 133, pp. 506–512 1986

32. Asztґely, D.: On antenna arrays in mobile communication systems: Fast fading and GSM base station receiver algorithms. Ph.D Thesis, Royal Institute of Technology, Stockholm, Sweden, IR-S3-SB-9611 1996

33. Ertel, R.: Vector channel model evaluation. SW Bell Tech. Res., Tech. Rep 1997

34. Stapleton, S., Carbo, X., McKeen, T.: Tracking and diversity for a mobile communications base stationarray antenna. In: IEEE 46th Vehicular Technology Conference, 1996.‘Mobile Technology for the Human Race’., vol. 3

35. Zetterberg, P., Ottersten, B.: The spectrum efficiency of a base station antenna array system forspatially selective transmission. IEEE Transactions on Vehicular Technology 44(3), 651–660 1995

36. Liberti, J., Rappaport, T.: A geometrically based model for line-of-sight multipath radiochannels. In: IEEE 46th Vehicular Technology Conference, vol. 2, pp. 844–848 1996.

37. Klein, A., Mohr, W.: A statistical wideband mobile radio channel model including the directions-of-arrival. In: IEEE 4th International Symposium on Spread Spectrum Techniques and Applications, pp. 102–06 1996.

38. Trump, T., Ottersten, B.: Estimation of nominal direction of arrival and angular spread using an array of senso. Signal Processing 50(1), 57–69 1996

39. Raleigh, G., Paulraj, A.: Time varying vector channel estimation for adaptive spatialequalization In: IEEE Global Telecommunications Conference (GLOBECOM), vol. 1 1995

40. Tanaka, T., Kozono, S., Akeyama, A.: Urban multipath propagation delay characteristics in mobile communications. Electronics and Communications in Japan (Part I: Communications) 74(8), 80–88 1991.

41. Lvovich I.Ya., Preobrazhensky A.P. Principle development building CAD systems of diffraction structures and radar antennas / Bulletin of the Voronezh State Technical University. 2006.Vol. 2. No. 12. P. 125-127.

42. Lvovich I.Ya., Preobrazhensky A.P. Development of information and CAD software diffraction structures and radar antennas / Bulletin of Voronezh State Technical University. 2006.V. 2. No. 12. S. 63-68.

43. Preobrazhensky A.P., Khukhryansky Yu.P. Approximation scattering characteristics of electromagnetic waves of elements, constituent objects of complex shape / Bulletin Voronezh State Technical University. 2005. T. 1. No. 8. S. 15-16.

44. Kosilov A.T., Preobrazhensky A.P. Calculation Methods radar characteristics of objects / Bulletin of Voronezh State Technical University. 2005.V. 1. No. 8. P. 68- 71.

45. Preobrazhensky A.P. Analysis Modeling and Algorithmization diffraction structures in CAD radar antennas / Voronezh, Scientific book, 2007, 248 p.

46. ​​Golovinov S.O., Preobrazhensky A.P., Lvovich I.Ya. Modeling the propagation of millimeter waves in urban development based on a combined algorithm / Telecommunications. 2010. No. 7. P. 20-23.

47. Lvovich Ya.E., Lvovich I.Ya., Preobrazhensky A.P. Problem solving estimates of the scattering characteristics of electromagnetic waves on diffraction structures during their design / Bulletin Voronezh Institute of High Technologies. 2010. No. 6. S. 255-256.

48. Preobrazhensky A.P. Radar forecasting characteristics of objects with radar absorbing coatings in wavelength range / Telecommunications. 2003. No. 4. P. 21-24.

49. Preobrazhensky A.P., Choporov O.N. Forecasting Technique radar characteristics of objects in the wavelength range c using the results of measuring the scattering characteristics on discrete frequencies / Control systems and information technologies. 2004. No. 2 (14). S. 98-101.

50. Preobrazhensky A.P. Radar forecasting characteristics of objects in the wavelength range using discrete scatter measurement results frequencies / Telecommunications. 2004. No. 5. S. 32-35.

51. Saleh, A., Valenzuela, R .: A Statistical Model for Indoor Multipath Propagation. IEEE Journal on Selected Areas in Communications 5 (2), 128-137 1987.

52. Spencer, Q., Rice, M., Jeffs, B., Jensen, M.: A statistical model for angle of arrival in indoor multipath propagation. In: IEEE Vehicular Technology Conference, vol. 47, pp. 1415–1419 (1997) .

Zhulyabin Dmitry Yuryevich

Email: app@vivt.ru

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Keywords: channel, communication, information transfer, model

For citation: Zhulyabin D.Y. THE MODELS OF CHANNELS FOR WIRELESS SYSTEMS OF COMMUNICATION. Modeling, Optimization and Information Technology. 2014;2(1). Available from: https://moit.vivt.ru/wp-content/uploads/2014/03/Zhulyabin_1_14_1.pdf DOI: (In Russ).

1296

Full text in PDF

Published 31.03.2014