Экспериментальное моделирование переходных теплогидравлических процессов в энергетической установке
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Experimental modeling of transient thermohydraulic processes in a power plant

Bratygina V.S.   idNovikov D.I. idSataev A.A. Melnikov V.I.  

UDC 681.51, 621.039
DOI: 10.26102/2310-6018/2021.33.2.015

  • Abstract
  • List of references
  • About authors

Having half a century of experience in the design and operation of marine nuclear power plants, when designing new installations, the struggle is for increased resource characteristics of equipment and, in particular, the resource of the reactor core. To achieve the desired result, a deep analysis of all physical and chemical processes occurring in the main equipment of the reactor plant is carried out. An important role in this work is played by the study of transient thermohydraulic processes. Such processes are inertial and introduce oscillatory perturbations of the first order of smallness into the system. It is also important to investigate systems for dynamic stability. This aspect of the study is important not only for ship installations with their inherent maneuverability, but also for large-scale power units. Analysis and research of mathematical models is a difficult process, because even for the simplest two-circuit installation, such a model will consist of several nonlinear differential equations. In this case, it is advisable to use either numerical methods or simplified mathematical models. To study the transient thermal-hydraulic processes in this work, an experimental stand FT-100 was used, which is a model of a two-circuit installation. Several nominal operation modes were implemented. The results obtained are checked for agreement with the simplest mathematical model, and can serve as a starting point for further calculation of the installation parameters. Also, the value of the obtained data array lies in the possibility of verifying the calculated codes of dynamics and automatic control systems. These codes are a valuable tool in design, and obtaining new experimental data helps to increase the accuracy of the calculation.

1. Zverev D.L., Pahomov A.N., Polunichev V.I., Veshnyakov K.B., Kabin S.V. Reaktornaya ustanovka novogo pokoleniya RITM-200 dlya perspektivnogo atomnogo ledokola. Atomnaya energiya. 2012;113(6):323-328.

2. V. V. Petrunin, YU. P. Fadeev, V. A. Panov, A. N. Pahomov, V. I. Polunichev, D. A. Golubeva Prodlenie sroka ekspluatacii i povyshenie bezopasnosti sudovyh reaktornyh ustanovok. Atomnaya energiya. 2012; 113(6): 328-333.

3. Kresov D.G., Kulikov A.V., Olenskaya E.V. Obespechenie povyshennyh resursnyh harakteristik sudovyh reaktornyh ustanovok. Atomnaya energiya. 2019;127(1):8-13.

4. Mitenkov F.M., CHirkov V.A. Sistema avtomaticheskogo upravleniya. Nizhnij Novgorod. Nizhegorod. gos. tekhn. un-t im. R.E. Alekseeva. 2015; 159.

5. Semenov, V. K. Matematicheskoe modelirovanie teplofizicheskih processov v sisteme reaktor-parogenerator. Vestnik IGEU. 2013;1:5-8.

6. Budnikov V.I., Savihin O.G., CHistov A.S. CHislennoe modelirovanie nestacionarnyh teplogidravlicheskih processov v konturah cirkulyacii vodyanogo teplonositelya perspektivnoj AES. Vestnik Nizhegorodskogo universtiteta im. N.I. Lobachevskogo im. N.I. Lobacheskogo. 2013; 1(1): 158-163.

7. Gusev I. N., Kazanskij V. R., Vitkovskij I. L. Dinamicheskaya ustojchivost' energobloka s VVER-1200. Izvestiya vysshih uchebnyh zavedenij. YAdernaya energetika. 2017;3:22-32.

8. Mitenkov F.M., Motorov B.I. Nestacionarnye rezhimy sudovyh yadernyh paroproizvodyashchih ustanovok. L. Sudostroenie. 1970; 200.

9. Anoshkin YU.I., Duncev A.V. Teploobmennye processy v YAEU. Nizhnij Novgorod. Nizhegorod. gos. tekhn. un-t im. R.E. Alekseeva. 2015; 139.

10. Emel'yanov I.YA., Efanov A.I., Konstantinov L.V. Nauchno-tekhnicheskie osnovy upravleniya yadernymi reaktorami. M. Energoizdat. 1981; 360

Bratygina Victoria Sergeevna

Nizhny Novgorod State Technical University named after R.E. Alekseev
student 6 years of study

Nizhny Novgorod, Russian Federation

Novikov Denis Ilich

Email: grey1ngreen27@gmail.com

ORCID | eLibrary |

Nizhny Novgorod State Technical University named after R.E. Alekseev

Нижний Новгород, Russian Federation

Sataev Aleksandr Aleksandrovich

Email: sancho_3685@mail.ru

ORCID | eLibrary |

Nizhny Novgorod State Technical University named after R.E. Alekseev

Nizhny Novgorod, Russian Federation

Melnikov Vladimir Ivanovich
Dr. Sci. (in Engineering), Associate Professor

Nizhny Novgorod State Technical University named after R.E. Alekseev

Nizhny Novgorod, Russian Federation

Keywords: transient processes, dynamic characteristics, model of a nuclear plant, experimental modeling

For citation: Bratygina V.S. Novikov D.I. Sataev A.A. Melnikov V.I. Experimental modeling of transient thermohydraulic processes in a power plant. Modeling, Optimization and Information Technology. 2021;9(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=892 DOI: 10.26102/2310-6018/2021.33.2.015 (In Russ).

457

Full text in PDF

Accepted 30.07.2021

Published 30.07.2021