Локально-оптимальное управление в электромеханической системе с бесконтактным двигателем постоянного тока
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Local-optimal control in an electromechanical system with a contactless DC motor

Kiseleva O.A.   Vinokurov S.A.   Kiseleva K.D.  

UDC 621.313.292
DOI: 10.26102/2310-6018/2021.32.1.016

  • Abstract
  • List of references
  • About authors

The paper analyses the possibility of local-optimal control in an electromechanical system based on a contactless DC motor, which allows the required voltage pulse parameters to be determined, not only in the regulated signal sector, but also in the next sector during the switching of the basic vectors of the control process. The output coordinate (system state) is controlled by the switching of the reference vectors and the pulsation of each time pulse. The base vector pulsation control processes (pulse width modulation) are similar for each vector, only these vectors can be shifted in space by a certain angle. The angle at which these vectors are shifted is inversely proportional to the product of the number of pole and phase pairs. The pulsation processes become periodic, with the base vector and zero vector alternating. Depending on rotor speed and pulsation period, number of pulsations of one basic vector (without switching it in space) can reach several dozens. If we assume that processes occurring at switching of base vectors only are identical in all parameters except for location in space, we can move origin of coordinates to new point of space (location of base vector) and get periodical processes for creation of electromagnetic momentum during calculation. To synthesize an electromechanical control system with a contactless DC engine, you can use the predictive control method - Model predictive control (MPC). The purpose of this study is to assess the feasibility of locally optimal control every time the base vectors are switched, taking into account the features of building a DC contactless engine. It is aimed at forming the controlled parameters of one base vector in combination with a zero vector, which is defined by both spatial and initial conditions of the original base vector. It is shown that the state of the system will also depend on the rate of dispersal in the zero vector of accumulated electromagnetic energy during the existence of the base vector.

1. Kiseleva O. A., Vinokurov S. A., Kiseleva D. D., Roshchupkin D. F. Formation of the transition operator in the control system of a contactless DC motor. In the collection: Science in the modern information society. Proceedings of the XXIV International Scientific and practical conference. North Charleston, Morrisville. 2020:144-147.

2. Kiselev D. P., Fedosova I. S., Kiseleva O. A. Formation of control pulses of a contactless DC motor in the starting mode Modeling, optimization, and information technology. 2015;4(11):3.

3. Vinokurov S. A., Bukatova V. E., Kiseleva O. A. Investigation of the switching process and dynamics of contactless DC motors. Bulletin of the Voronezh State Technical University. 2008;4(3):83-85.

4. Vinokurov S. A., Kiseleva O. A., Bukatova V. E. Discrete continuous control systems in electric drives with contactless DC motors. Management systems and information technologies. 2009;1(35):205-208.

5. Kiseleva O. A., Romanov A.V., Kiselev D. P. Mathematical model of the control system of a contactless DC motor. Modeling, optimization, and information technology. 2015;1(8):3.

6. Kiseleva O. A., Vinokurov S. A., Popova T. V., Timoshkin A. Yu., Babenko V. V. Energy-saving control of an electric drive with a contactless DC motor. In the collection: Alternative and intelligent energy. Materials of the II International Scientific and Practical Conference. 2020:299-300.

7. Vinokurov S. A., Kiseleva O. A., Popova T. V. Ideal vector control of a contactless DC motor. Modeling, optimization, and information technology. 2017;1(16):13.

8. Kiseleva O. A., Vinokurov S. A., Popova T. V. Discrete equivalent to the ideal vector control of a contactless DC motor Modeling, optimization, and information technology. 2017;1(16):16.

9. Vinokurov S. A., Bukatova V. E., Kiseleva O. A. Features of parametric and signal adaptation in electromechanical systems with contactless DC motors. Management systems and information technologies. 2009;1-2(35):225-229.

10. Vinokurov S. A., Bukatova V. E., Kiseleva O. A. Adaptive control with an explicit reference model in electromechanical systems with a contactless DC motor. Management systems and information technologies. 2007;4(30):82-86.

11. Kiseleva O. A., Popova T. V. Incomplete feedback in systems with contactless DC motors. In the collection: Intelligent information systems 2012:69-70.

12. Kiseleva O. A., Bukatova V. E., Popova T. V. Extreme systems with contactless DC motors and incomplete feedback Electrotechnical complexes and control systems. 2009;2:31-34.

13. Vinokurov S. A., Kiseleva O. A., Rubtsov N. I. Evolution of the observer state from pulse to pulse in an electric drive with a contactless DC motor. Modeling, optimization, and information technology. 2019;4(27):25-26.

14. Kiseleva O. A., Popova T. V., Timoshkin A. Yu. Features of the state observer application in a contactless DC motor Modeling, optimization, and information technology. 2019;4(27):24-25.

15. Vinokurov S. A., Kiseleva O. A., Bukatova V. E. Modeling and synthesis of the adaptation circuit in electromechanical systems with contactless DC motors. Bulletin of the Voronezh State Technical University. 2007;3(5):126-128.

16. Kiseleva O. A., Vinokurov S. A., Popova T. V., Kiseleva D. D. Features of control of a discrete rotating field in an electric drive with a contactless DC motor. In the collection: Fundamental and applied sciences today. Proceedings of the XXIII International Scientific and practical Conference. North Charleston, Morrisville, 2020:69-71.

17. Parkhomenko G. A., Kiseleva O. A., Fedosova I. S., Babenko V. V. Features of vector control of a contactless DC motor. Energy-XXI century. 2016;3(95):72-79.

18. Kiseleva D. D., Rubtsov N. I., Vinokurov S. A. Sensitivity of the electromagnetic moment in a system with a contactless DC motor. Scientific journal "Student and Science". 2020;4(15):33-36.

Kiseleva Olga Alekseevna

Email: kis.ola@mail.ru

Voronezh State Technical University

Voronezh, Russian Federation

Vinokurov Stanislav Anatolyevich
Candidate of Technical Sciences, Associate Professor
Email: stvinokurov@rambler.ru

Voronezh State Technical University

Voronezh, Russian Federation

Kiseleva Kiseleva Darya Dmitrievna Dmitrievna

Email: kis.daria02@mail.ru

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: contactless DC motor, electromechanical system, control system, commutation process, local-optimal control, state observers, base and zero vector

For citation: Kiseleva O.A. Vinokurov S.A. Kiseleva K.D. Local-optimal control in an electromechanical system with a contactless DC motor. Modeling, Optimization and Information Technology. 2021;9(1). Available from: https://moitvivt.ru/ru/journal/pdf?id=916 DOI: 10.26102/2310-6018/2021.32.1.016 (In Russ).

525

Full text in PDF