Планирование маршрутов судов через акватории с интенсивным движением
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Ships route planning on heavy-traffic marine area

idGrinyak V.M. Shulenina A.V.   Prudnikova L.I.   Devyatisilnyi A.S.  

UDC 004.8
DOI: 10.26102/2310-6018/2021.33.2.018

  • Abstract
  • List of references
  • About authors

This work is about navigation safety of marine traffic at sea areas. The paper considers the problem of planning a route for a vessel to cross water areas with heavy traffic. It should be borne in mind that the trajectory of the vessel should be consistent with established navigational practices and collective navigation experience. Isolation of established patterns of movement of a specific sea area from retrospective information about its traffic by clustering the parameters of vessel movement is a promising way to identify such an experience. The task is considered relevant due to the promising development of unmanned marine vehicles. Ship's passage routes planning passage should be carried out considering the specified restrictions when moving through the water areas with established routes. Isolation of patterns of movement of a specific marine area from retrospective information about its traffic is a possible way of identifying these restrictions. Model representations of such a problem can be formulated based on the idea of clustering the parameters of ship traffic. The model of the route planning problem is based on finding the shortest path on a weighted graph. There are several ways to construct such a graph: a regular mesh of vertices and edges, a layered mesh of vertices and edges, a random mesh of vertices and edges, vertices and edges based on historical data. The weight of the ribs is proposed to be set as a function of the “desirability” of a particular course of the vessel for each point of the water area, considering the identified movement patterns. The water area is divided into sections and for each of them clustering of rates and velocities is performed. Possible clustering methods are discussed in the paper, and a choice is made in favor of subtractive clustering, which does not require preliminary specification of the number of clusters. Services of the Automatic Identification System can serve as a source of data on water area traffic. The paper shows the possibility of using AIS data available on specialized Internet resources. These data reflect well the summary features of the water area traffic despite their “sparseness”. The historical AIS data of sea traffic at Tokyo Bay and Tsugaru Straight are used for identifying traffic schema and ship routes planning with the model designed under presented research.

1. Zhao L., Shi G. Maritime anomaly detection using density-based clustering and recurrent neural network. Journal of Navigation. 2019;72(4):894–916.

2. Grinyak V.M., Devyatisilnyi A.S., Ivanenko Y.S. Decision support for marine traffic control based on route clustering. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2020;12(3):436-449.

3. Obshchiye polozheniya ob ustanovlenii putey dvizheniya sudov (General provisions on the establishment of ship routes), № 9036, MO SSSR. 1987.

4. Pershina L.A., Astreina L.S. Ship routing based on weather conditions. Ekspluatatsiya morskogo transporta. 2019;(2):30-38.

5. Wang H.B., Li X.B., Li P.F., Veremey E.I., Sotnikiva M.V. Application of real-coded genetic algorithm in ship weather routing. Journal of Navigation. 2018;28(4):989-1010.

6. Sotnikova M.V. Algorithms of marine ships routing taking into account weather forecast. Vestnik of Saint Petersburg university applied mathematics. Computer science. Control processes. 2009;(2):181-196.

7. Titov A.V., Barakat L., Chanchikov V.A., Taktarov G.A., Kovalev O.P. Control systems of unmanned vessels. Marine Intellectual Technologies. 2019;43(1-4):109-120.

8. Karetnikov V.V., Kozik S.V., Butsanets A.A. Risks assessment of applying unmanned means of water transport in the water area. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2019;(6):987-1002.

9. Akmaykin D.A., Bukin O.A., Grinyak V.M., Moskalenko M.A. Ships route planing with the account of dangerous sea waves. Marine Intellectual Technologies. 2018;42(4-5):148-152.

10. Akmaykin D.A., Grnyak V.M. Ships route searching with respect of sea waves danger, IOP Conference Series: Earth and Environmental Science. 2019;272:032103.

11. Bishop C.M. Pattern recognition and machine learning. New York: Springer Science Business Media. 2006.

12. Bezdek J.C. Pattern recognition with fuzzy objective function algorithms. Boston: Springer, 1981.

13. Yager R., Filev D. Essentials of fuzzy modeling and control. New York: John Wiley & Sons. 1994.

14. Debnath A., Chin H.Ch. Modelling collision potentials in port anchorages: application of the navigational traffic conflict technique (NTCT). Journal of Navigation. 2016;69(1):183-196.

15. Grinyak V.M., Ivanenko Y.S., Lulko V.I., Shulenina A.V., Shurygin A.V. Multi-measure navigation safety estimation and digital represent for marine area. Modelling, Optimization and Information Technologies. 2020;8(1):40-41.

16. Grinyak V.M., Devyatisilnyi A.S., Shulenina A.V. Estimation of the emotional load on the navigators under the conditions of heavy traffic. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. 2019;(4):640-651.

17. Grinyak V.M., Goroshko O.A., Devyatisilny A.S. Expert system for evaluation and visualization of the parameters of the marine traffic safety. Mechatronics, automation, control. 2017;(2):127-134.

18. Liu Z., Wu Zh., Zheng Zh. Modelling ship density using a molecular dynamics approach. Journal of Navigation. 2020;73(3):628-645.

19. Weng J., Liao Sh., Yang D. Methodology for estimating waterway traffic capacity at shanghai estuary of the Yangtze river. Journal of Navigation. 2020;73(1):75-91.

20. Wang L., Li Y., Wan Zh., Yang Z., Wang T., Guan K., Fu L. Use of AIS data for performance evaluation of ship traffic with speed control. Ocean Engineering. 2020;204.

21. Naus K. Drafting route plan templates for ships on the basis of AIS historical data. Journal of Navigation. 2019;73(3):726-745.

22. Zhao L., Shi G. Maritime anomaly detection using density-based clustering and recurrent neural network. Journal of Navigation. 2019;72(4):894–916.

23. Zhen R., Jin Y., Hu Q., Shao Zh., Niktakos N. Maritime anomaly detection within coastal waters based on vessel trajectory clustering and naïve Bayes classifier. Journal of Navigation. 2017;70(3):648-670.

24. Tang H., Wei L., Yin Y., Shen H., Qi Y. Detection of abnormal vessel behaviour based on probabilistic directed graph model. Journal of Navigation. 2019;73(5):1014–1035.

Grinyak Victor Mikhailovich
PhD assistent professor
Email: victor.grinyak@gmail.com

ORCID | eLibrary |

Vladivostok State University of Economics and Service
Institute of Automation and Control Processes FEBRAS

Vladivostok, Russia

Shulenina Alena Viktorovna

Email: shuleninaav@mail.ru

eLibrary |

Far Eastern Federal University

Vladivostok, Russia

Prudnikova Larisa Ivanovna
PhD assistent professor
Email: prudnikova.li@dvfu.ru

Far Eastern Federal University

Vladivostok, Russia

Devyatisilnyi Alexander Sergeevich
PhD professor
Email: devyatis@iacp.ru

eLibrary |

Institute of Automation and Control Processes FEBRAS

Vladivostok, Russia

Keywords: marine safety, traffic intensity, ship trajectory, ship traffic, clustering, traffic area, automatic identification system

For citation: Grinyak V.M. Shulenina A.V. Prudnikova L.I. Devyatisilnyi A.S. Ships route planning on heavy-traffic marine area. Modeling, Optimization and Information Technology. 2021;9(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=980 DOI: 10.26102/2310-6018/2021.33.2.018 (In Russ).

522

Full text in PDF

Revised 29.07.2021

Accepted 30.07.2021

Published 01.08.2021