Ключевые слова: машинное обучение, межсетевой экран веб-приложений, глубокое обучение, трансформерные архитектуры, детектирование аномалий, кибербезопасность, ансамблевые методы
Машинное обучение в защите веб-приложений: современные тренды и перспективы
УДК 004.78:004.891.2
DOI: 10.26102/2310-6018/2025.51.4.019
Стремительная эволюция киберугроз и их возрастающая сложность обусловливают критическую необходимость интеграции методов машинного обучения в системы защиты веб-приложений. Настоящее исследование представляет комплексный анализ современных подходов к применению алгоритмов машинного обучения в архитектуре межсетевых экранов веб-приложений (WAF) с фокусом на повышение эффективности детектирования атак нулевого дня. Методологическая основа исследования включает сравнительный анализ производительности ансамблевых методов, глубокого обучения и трансформерных архитектур на стандартизированных наборах данных CSIC 2010 и CIC-IDS2017. Эмпирическая база исследования составила 2,847,372 HTTP-запроса, проанализированных с использованием 14 различных алгоритмов машинного обучения в период с июня по декабрь 2024 года. Результаты демонстрируют превосходство гибридных архитектур LSTM-трансформер с достигнутой точностью 98,73 % для детектирования SQL-инъекций и 97,84 % для XSS-атак, что превышает производительность традиционных сигнатурных методов на 23,7 %. Установлено, что применение техник конструирования признаков в сочетании с методами Random Forest и Extreme Gradient Boosting обеспечивает повышение метрики F1-score до 0,989 при сокращении времени обработки запросов в 18 раз относительно алгоритмов на основе правил. Практическая значимость исследования заключается в разработке адаптивной архитектуры WAF, способной к автоматической корректировке параметров детектирования в реальном времени с учетом развивающегося ландшафта угроз. Теоретический вклад работы состоит в формализации принципов интеграции механизмов самовнимания в задачи анализа HTTP-трафика и обосновании оптимальных конфигураций многоголового внимания для различных типов веб-атак.
1. Román-Gallego J.-A., Pérez-Delgado M.-L., Viñuela M.L., Vega-Hernández M.-C. Artificial Intelligence Web Application Firewall for Advanced Detection of Web Injection Attacks. Expert Systems. 2023;42(1). https://doi.org/10.1111/exsy.13505
2. Shaheed A., Kurdy M.H.D.B. Web Application Firewall Using Machine Learning and Features Engineering. Security and Communication Networks. 2022;2022. https://doi.org/10.1155/2022/5280158
3. Dawadi B.R., Adhikari B., Srivastava D.K. Deep Learning Technique-Enabled Web Application Firewall for the Detection of Web Attacks. Sensors. 2023;23(4). https://doi.org/10.3390/s23042073
4. Vartouni A.M., Teshnehlab M., Kashi S.S. Leveraging Deep Neural Networks for Anomaly‐Based Web Application Firewall. IET Information Security. 2019;13(4). https://doi.org/10.1049/iet-ifs.2018.5404
5. Hartono B., Silalahi F.D., Muthohir M. Transformers in Cybersecurity: Advancing Threat Detection and Response Through Machine Learning Architectures. Journal of Technology Informatics and Engineering. 2024;3(3):382–396. https://doi.org/10.51903/jtie.v3i3.211
6. Avci C., Tekinerdogan B., Catal C. Design Tactics for Tailoring Transformer Architectures to Cybersecurity Challenges. Cluster Computing. 2024;27:9587–9613. https://doi.org/10.1007/s10586-024-04355-0
7. Junior M.D., Ebecken N.F.F. A New WAF Architecture with Machine Learning for Resource-Efficient Use. Computers & Security. 2021;106. https://doi.org/10.1016/j.cose.2021.102290
8. Applebaum S., Gaber T., Ahmed A. Signature-Based and Machine-Learning-Based Web Application Firewalls: A Short Survey. Procedia Computer Science. 2021;189:359–367. https://doi.org/10.1016/j.procs.2021.05.105
9. Belavagi M.C., Muniyal B. Performance Evaluation of Supervised Machine Learning Algorithms for Intrusion Detection. Procedia Computer Science. 2016;89:117–123. https://doi.org/10.1016/j.procs.2016.06.016
10. Urda D., Martínez B., Basurto N., Kull M., Arroyo Á., Herrero Á. Enhancing Web Traffic Attacks Identification Through Ensemble Methods and Feature Selection. arXiv. URL: https://arxiv.org/abs/2412.16791 [Accessed 15th July 2025].
11. Franklin J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. The Mathematical Intelligencer. 2005;27:83–85. https://doi.org/10.1007/BF02985802
12. Sukumar J.V.A., Pranav I., Neetish M.M., Narayanan J. Network Intrusion Detection Using Improved Genetic k-Means Algorithm. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 19–22 September 2018, Bangalore, India. IEEE; 2018. P. 2441–2446. https://doi.org/10.1109/ICACCI.208.8554710
13. Vaswani A., Shazeer N., Parmar N., et al. Attention Is All You Need. arXiv. URL: https://arxiv.org/abs/1706.03762 [Accessed 15th July 2025].
14. Tavallaee M., Bagheri E., Lu W., Ghorbani A.A. A Detailed Analysis of the KDD CUP 99 Data Set. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 08–10 July 2009, Ottawa, ON, Canada. IEEE; 2009. P. 1–6. https://doi.org/10.1109/CISDA.2009.5356528
15. Shiravi A., Shiravi H., Tavallaee M., Ghorbani A.A. Toward Developing a Systematic Approach to Generate Benchmark Datasets for Intrusion Detection. Computers & Security. 2012;31(3):357–374. https://doi.org/10.1016/j.cose.2011.12.012
Ключевые слова: машинное обучение, межсетевой экран веб-приложений, глубокое обучение, трансформерные архитектуры, детектирование аномалий, кибербезопасность, ансамблевые методы
Для цитирования: Ледовская Е.В. Машинное обучение в защите веб-приложений: современные тренды и перспективы. Моделирование, оптимизация и информационные технологии. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2060 DOI: 10.26102/2310-6018/2025.51.4.019
Поступила в редакцию 29.08.2025
Поступила после рецензирования 03.10.2025
Принята к публикации 16.10.2025