Методы комбинаторной оптимизации таксономических фильтров обработки информации для прогнозирования финансовых рынков
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Methods of combinatorial optimization of taxonomic filters for information processing in financial market forecasting

Musin I.R. 

UDC 007.52
DOI: 10.26102/2310-6018/2025.51.4.063

  • Abstract
  • List of references
  • About authors

The article is devoted to the study of the system analysis of the predictive ability of the tonality of information flows in the cryptocurrency market. A method of system analysis and combinatorial optimization of taxonomic filters for processing news information is proposed to maximize the effectiveness of the tonality coefficient in predicting the dynamics of cryptocurrency prices, taking into account time lags. A weighted tonality coefficient with a logarithmic multiplier of the information flow volume has been developed, accounting for sentiment polarity, event importance level, and news flow intensity. The paradox of the impact level has been experimentally established, in which low-visibility information demonstrates increased predictive ability compared to official high-impact messages due to the effects of information asymmetry and preliminary integration of critical events into prices by institutional participants. Systematic combinatorial optimization of 39 combinations of taxonomic filters for 10 cryptocurrencies revealed the lack of a universal approach to filtering and identified four different patterns of asset response to the information background. For Bitcoin, a correlation of 0.3611 was achieved with a leading lag of +3 days when using a low-visibility information filter, which provides a significant 32 % improvement over the basic method (correlation of 0.2737, lagging lag of −6 days). The method was validated on a corpus of 108637 classified information units for the period June-September 2025 using language models for multi-taxonomic classification.

1. Bollen J., Mao H., Zeng X. Twitter Mood Predicts the Stock Market. Journal of Computational Science. 2011;2(1):1–8. https://doi.org/10.1016/j.jocs.2010.12.007

2. Kraaijeveld O., De Smedt J. The Predictive Power of Public Twitter Sentiment for Forecasting Cryptocurrency Prices. Journal of International Financial Markets, Institutions and Money. 2020;65. https://doi.org/10.1016/j.intfin.2020.101188

3. Valencia F., Gómez-Espinosa A., Valdés-Aguirre B. Price Movement Prediction of Cryptocurrencies Using Sentiment Analysis and Machine Learning. Entropy. 2019;21(6). https://doi.org/10.3390/e21060589

4. Merton R.C. A Simple Model of Capital Market Equilibrium with Incomplete Information. The Journal of Finance. 1987;42(3):483–510.

5. Tetlock P.C. Giving Content to Investor Sentiment: The Role of Media in the Stock Market. The Journal of Finance. 2007;62(3):1139–1168.

6. Abraham J., Higdon D., Nelson J., Ibarra J. Cryptocurrency Price Prediction Using Tweet Volumes and Sentiment Analysis. SMU Data Science Review. 2018;1(3). https://scholar.smu.edu/datasciencereview/vol1/iss3/1

7. Shen D., Urquhart A., Wang P. Does Twitter Predict Bitcoin? Economics Letters. 2019;174:118–122. https://doi.org/10.1016/j.econlet.2018.11.007

8. Guyon I., Elisseeff A. An Introduction of Variable and Feature Selection. Journal of Machine Learning Research. 2003;3:1157–1182.

9. Loughran T., McDonald B. When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of Finance. 2011;66(1):35–65. https://doi.org/10.1111/j.1540-6261.2010.01625.x

10. Makarov I., Schoar A. Trading and Arbitrage in Cryptocurrency Markets. Journal of Financial Economics. 2020;135(2):293–319. https://doi.org/10.1016/j.jfineco.2019.07.001

Musin Ilyas Rasulevich

Saint Petersburg State Electrotechnical University "LETI" named after V.I. Ulyanov (Lenin)

Saint Petersburg, Russian Federation

Keywords: system analysis, time lag analysis, information processing, tonality analysis, correlation analysis, cryptocurrency markets

For citation: Musin I.R. Methods of combinatorial optimization of taxonomic filters for information processing in financial market forecasting. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2112 DOI: 10.26102/2310-6018/2025.51.4.063 (In Russ).

26

Full text in PDF

Received 24.10.2025

Revised 19.12.2025

Accepted 26.12.2025