Типологизация развития опасных ситуаций для реагирования оперативных служб территорий на основе анализа многолетней статистики
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Typification of the development of dangerous situations for the response of operational services in territories based on the analysis of many years of statistics

idFaddeev A.O., Nevdakh T.M.,  Bronenkova Y.V. 

UDC 614.8
DOI: 10.26102/2310-6018/2025.51.4.058

  • Abstract
  • List of references
  • About authors

The article formulates a complex problem of modeling and forecasting the development of dangerous processes that are formed in the most diverse areas of modern society's life. Solving this problem is relevant and significant for the effective functioning of emergency response services in making management decisions, which, in turn, helps to accelerate the elimination of emergencies and minimize human casualties and economic losses. Two approaches to solving this problem are presented in relation to the response of operational services. Both approaches are based on the analysis of dynamic series. A risk typology of the territories of the Russian Federation has been performed based on the quantitative analysis of the trend and seasonal components of the dynamic series of the number of emergencies that occurred between 2009 and 2021. It has been shown that the trend components determine the main trend of changes in the number of emergencies over time, while the seasonal component characterizes the variability of regular changes in their dynamics. The article highlights the federal districts where similar scenarios of emergency situation dynamics are formed. It discusses the issues of modeling the dynamics of phishing attacks in the cyberspace of the Russian Federation and solves the problem of obtaining predictive information about the number of such attacks. The article examines the structure of the dynamic series of phishing attacks to identify its trend, seasonal, and random components. The article uses a neural LSTM model for predicting phishing attacks. The error in the forecast obtained with its help is on average no more than 6 %. It is concluded that recurrent neural networks can be useful in the study of other types of cybercrimes. The materials of the article and the approaches developed in it are scientifically significant for the further development of a system of forecasting models that allow for the study of complex interactions in the implementation of dangerous phenomena in the modern territorial and information-telecommunication spaces of the Russian Federation, as well as for the analytical services of the Ministry of Emergency Situations and the Ministry of Internal Affairs.

1. Minaev V.A., Bondar' K.M., Rabchevskii A.N., Fedorovich V.Yu. Protivodeistvie ekstremistskoi ideologii v sotsial'nykh media: matematicheskie modeli i metody. Khabarovsk: DVYuI MVD Rossii; 2023. 232 p. (In Russ.).

2. Minaev V.A., Stepanov R.O., Faddeev A.O. Arkticheskie riski: modelirovanie, kompleksnaya otsenka, upravlenie. Moscow: Izd-vo MGTU im. N.E. Baumana; 2022. 422 p. (In Russ.).

3. Minaev V.A., Fedorovich V.Yu., Bondar' K.M., et al. Setevaya destruktivnaya informatsiya: poisk i protivodeistvie. Moscow: MosU MVD Rossii im. V.Ya. Kikotya; 2024. 345 p. (In Russ.).

4. Kil'dishev G.S., Frenkel' A.A. Analiz vremennykh ryadov i prognozirovanie. Moscow: URSS; 2021. 101 p. (In Russ.).

5. Luneev V.V. Prestupnost' ХХ veka: mirovye, regional'nye i rossiiskie tendentsii. Moscow: Norma; 2021. 912 p. (In Russ.).

6. Altunina V.V., Anuchina D.A. Russian Regions' Classification in the Context of Spatial Polarization. Journal of Economics, Entrepreneurship and Law. 2022;12(5):1453–1474. (In Russ.). https://doi.org/10.18334/epp.12.5.114641

7. Manaeva I.V., Rastvortseva S.N. Prostranstvennoe razvitie gorodov Rossii: teoriya, analiz, modelirovanie. Belgorod: NIU BelGU; 2021. 196 p. (In Russ.).

8. Fonotov A.G., Bergal' O.E. Territorial Clusters in the Spatial Development System: Foreign Experience. Spatial Economics. 2020;16(4):113–135. (In Russ.). https://doi.org/10.14530/se.2020.4.113-135

9. Faddeev A.O., Pavlova S.A. About a Possible Mathematical Method Studying the Dynamics of Dangerous Processes Geodynamic Origin. Vestnik of Ryazan State Radio Engineering University. 2021;(78):112–119. (In Russ.). https://doi.org/10.21667/1995-4565-2021-78-112-119

10. Nielsen A. Practical Time Series Analysis. Prediction with Statistics and Machine Learning. Moscow, Saint Petersburg: Dialektika-Vil'yams; 2021. 544 p. (In Russ.).

11. Faddeev A.O., Pavlova S.A. Integral Risk Assessment Model of Geodynamic Origin Emergency Situations. Vestnik of Ryazan State Radio Engineering University. 2020;(71):162–171. (In Russ.). https://doi.org/10.21667/1995-4565-2020-71-162-171

12. Pustynnyy Y.N. Solving the Problem of Vanishing Gradient Using Long Short Term Memory Neural Networks. Innovation & Investment. 2020;(2):130–132. (In Russ.).

13. Kapitsa A.V., Savkova E.O. Analysis of the LSTM Network to Predict the Exchange's Parameters. In: Informatika, upravlyayushchie sistemy, matematicheskoe i komp'yuternoe modelirovanie (IUSMKM-2023): Materialy XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii v ramkakh IX Mezhdunarodnogo Nauchnogo foruma Donetskoi Narodnoi Respubliki, 24–25 May 2023, Donetsk, DNR. Donetsk: Donetsk National Technical University; 2023. P. 229–237. (In Russ.).

Faddeev Alexander Olegovich
Doctor of Engineering Sciences, Docent
Email: fao1@mail.ru

ORCID |

Ryazan Branch of Moscow University of the Internal Affairs Ministry of Russia

Ryazan, Russian Federation

Nevdakh Tatiana Mikhailovna
Doctor of Engineering Sciences

eLibrary |

Academy of the FPS of Russia

Ryazan, Russian Federation

Bronenkova Yulia Vasilievna

Academy of Management of the Internal Affairs Ministry of Russia

Moscow, Russian Federation

Keywords: risk-typologization, territory of the Russian Federation, emergency situation, dynamic series, modeling the dynamics of phishing attacks, forecasting the development of dangerous processes, recurrent neural network, LSTM model

For citation: Faddeev A.O., Nevdakh T.M., Bronenkova Y.V. Typification of the development of dangerous situations for the response of operational services in territories based on the analysis of many years of statistics. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2147 DOI: 10.26102/2310-6018/2025.51.4.058 (In Russ).

35

Full text in PDF

Received 01.12.2025

Revised 15.12.2025

Accepted 19.12.2025