1. Hepburn, M.S., Wijesinghe, P., Chin, L., Kennedy, B.F., "Analysis of spatial resolution in phase-sensitive compression optical coherence elastography," Biomedical Optics Express. 2019;10(3):1496–1513. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-3-1496&id=406839 (дата обращения: 02.11.2020).
2. Sindeev S., Arnold P.G., Frolov S., Prothmann S., Liepsch D., Balasso A., Berg P., Kaczmarz S., Kirschke J.S. Phase-contrast MRI versus numerical simula-tion to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment . PLoS ONE. 2018;13(1), art.No. e0190696. Доступно по: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190696 DOI: 10.1371/journal.pone.0190696 (дата обращения: 02.11.2020).
3. Frolov S.V., Sindeev S.V., Liepsch D., Balasso A. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.Technology and Healthcare. 2016;24(3):317-333. DOI: 10.3233/THC-161132.
4. Sindeev, S., Kirschke, J.S., Prothmann, S., Frolov, S., Liepsch, D., Berg, P., Zim-mer, C., Friedrich, B. Evaluation of flow changes after telescopic stenting of a gi-ant fusiform aneurysm of the vertebrobasilar junction . Biomedical engineering online. 2019;18(1):1-15. Art. No.82. Доступно по: https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0699-1 DOI: 10.1186/s12938-019-0699-1 (дата обращения: 02.11.2020).
5. Frolov S.V., Sindeev S.V., Kirschke J.S., Arnold P., Prothmann S., Liepsch D., Balasso A., Potlov A., Larrabide I., Kaczmarz CFD and MRI studies of hemo-dynamic changes after flow diverter implantation in a patient-specific model of the cerebral artery. Experiments in Fluids. 2018;59(11), Art. No.176. Доступно по: https://link.springer.com/article/10.1007/s00348-018-2635-8?shared-article-renderer DOI: 10.1007/s00348-018-2635-8 (дата обращения: 02.11.2020).
6. Larin, K.V., Sampson, D.D.,"Optical coherence elastography – OCT at work in tissue biomechanics," Biomedical Optics Express. 2017;8(2):1172–1202. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-8-2-1172&id=357746 (дата обращения: 02.11.2020).
7. Leartprapun, N., Iyer, R.R., Mackey, C.D., Adie, S.G., "Spatial localization of mechanical excitation affects spatial resolution, contrast, and contrast-to-noise ratio in acoustic radiation force optical coherence elastography," Biomedical Optics Express. 2019;10(11):5877–5904. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-11-5877&id=422553 (дата обращения: 02.11.2020).
8. Frolov, S.V., Potlov A.Y., Frolovа, T.A., Proskurin S.G.,"Compression elastography and endoscopic optical coherence tomography for biomechanical properties evaluation of cerebral arteries walls with aneurysm and their phantoms," AIP Conference Proceedings. 2140, 020020 (2019). DOI: 10.1063/1.5121945.
9. Miyazawa, A., Makita, S., Li, E., Yamazaki, K., Kobayashi, M., Sakai, S., Yasuno, Y., "Polarization-sensitive optical coherence elastography," Biomedical Optics Express. 2019;10(10): 5162–5181. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-10-5162&id=418863 (дата обращения: 02.11.2020).
10. Nguyen,T.M., Arnal, B., Song, S., Huang, Z. Wang, R.K., O’Donnell, M.,"Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography," Journal of Biomedical Optics. 2015;20(1),016001. Доступно по: https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-20/issue-01/016001/Shear-wave-elastography-using-amplitude-modulated-acoustic-radiation-force-and/10.1117/1.JBO.20.1.016001.full?SSO=1 (дата обращения: 02.11.2020).
11. Wang, S, Larin, K.V.,"Optical coherence elastography for tissue characterization: a review," Journal of Biophotonics. 2015;8(4):279–302. Доступно по: https://onlinelibrary.wiley.com/doi/full/10.1002/jbio.201400108 (дата обращения: 02.11.2020).
12. Frolov, S.V., Potlov, A.Yu., Sindeev, S.V.," Selection of flow-diverter stent models using optical coherence tomography and mathematical modeling of hemodynamics," Biomedical Engineering. 2017;51(6):381–384. DOI: 10.1007/s10527-018-9754-7.
13. Zaitsev, V.Y., Matveev, L.A., Matveyev, A.L., Sovetsky, A.A., Shabanov, D.V., Ksenofontov, S.Y., Gelikonov, G.V., Baum, O.I., Omelchenko, A.I., Yuzhakov, A.V.,"Optimization of phase-resolved optical coherence elastography for highly-sensitive monitoring of slow-rate strains," Laser Physics Letters. 16(6), 065601 (2019). Доступно по: https://iopscience.iop.org/article/10.1088/1612-202X/ab183c (дата обращения: 02.11.2020).
14. Potlov A.Yu., Frolov S.V., Proskurin S.G. Young's modulus evaluation for blood vessel equivalent phantoms using optical coherence elastography. Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine – Proceedings of SPIE. 2019;11065, art. No. 110650X. DOI: 10.1117/12.2523237
15. Frolov, S.V., Potlov, A.Yu.,"An Endoscopic Optical Coherence Tomography System with Improved Precision of Probe Positioning," Biomedical Engineering. 2019;53(1):6–10. DOI: doi.org/10.1007/s10527-019-09866-4.
16. Potlov A.Y., Frolov S.V., Proskurin S.G. An algorithm for speckle noise reduction in endoscopic optical coherence tomography structural imaging. Saratov Fall Meeting 2018: Optical and Nano-Technologies for Biology and Medicine – Proceedings of SPIE. 2019;11065, art. No. 110650W. DOI: 10.1117/12.2523236.
17. Zvietcovich, F., Ge, G.R., Mestre, H., Giannetto, M., Nedergaard, M., Rolland, J.P., Parker, K.J., "Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography," Biomedical Optics Express. 2019;10(7):3699–3718. Доступно по: https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-10-7-3699&id=414934 DOI: 10.1364/BOE.10.003699 (дата обращения: 02.11.2020).