(cc)

УДК 517.977.56 DOI: <u>10.26102/2310-6018/2022.37.2.008</u>

Локально-одномерный метод для уравнения переноса сплошной среды с распределенными параметрами на сетеподобной области

3. Тран⊠

Воронежский государственный университет, Воронеж, Российская Федерация tranduysp94@gmail.com[⊠]

Резюме. В работе рассматривается широкий спектр вопросов, относящихся к решению начальнокраевой задачи для уравнения в частных производных параболического типа с многомерной пространственной переменной, принадлежащей евклидову пространству $\Re^n (n \ge 2)$ изменяющейся на сетеподобной области. Математическая модель, описывающая процесс переноса сплошной среды по сетевому носителю, определяется формализмами начальнокраевой задачи. Развивается ставшая классической идея для случая n=1, когда сетеподобная область является ориентированным ограниченным графом, т. е. совокупностью конечного числа отрезков, сочлененных между собой посредством концевых точек. При исследовании используются классические аппроксимации эволюционных дифференциальных уравнений 2-го также неклассические аппроксимации дифференциальных соотношений, порядка, а описываемых обобщенными условиями Кирхгофа в местах ветвления сетеподобной области (узловых местах области). При использовании разностных аппроксимаций оператора начальнокраевой задачи устанавливаются погрешность аппроксимаций и условия устойчивости разностной схемы. Изучены характерные свойства локально-одномерного метода и метода прогонки, используемых для решения поставленной задачи. Предложен алгоритм численного решения поставленной задачи, разработана ЭВМ-программа и осуществлен вычислительный эксперимент на серии задач прикладного характера. Полученные результаты представляют интерес для анализа прикладных задач переноса многофазных сплошных сред по сетеподобным 3D носителям.

Ключевые слова: начально-краевая задача переноса, сеть (ориентированный граф), перенос сплошной среды, разностная схема, локально-одномерный метод.

Для цитирования: Тран 3. Локально-одномерный метод для уравнения переноса сплошной среды с распределенными параметрами на сетеподобной области. *Моделирование, оптимизация* и информационные технологии. 2022;10(2). Доступно по: https://moitvivt.ru/ru/journal/pdf?id=1141 DOI: 10.26102/2310-6018/2022.37.2.008

Locally one-dimensional method for the transfer equation of a continuous medium with distributed parameters on a network-like domain

D. Tran[⊠]

Voronezh State University, Voronezh, Russian Federation tranduysp94@gmail.com[⊠]

Abstract. The paper considers a wide range of issues related to the solution of an initial-boundary value problem for a parabolic partial differential equation with a multidimensional space variable belonging

to the Euclidean space and changing on a network-like domain. The mathematical model describing the process of transferring a continuous medium over a network carrier is determined by the formalism of the initial-boundary value problem. An idea that has become classical is further developed for the case when a network-like region is a directed bounded graph, i.e., a collection of a finite number of segments connected to each other by means of end points. The study employs classical approximations of evolutionary differential equations of the 2-nd order as well as non-classical approximations of differential relations illustrated by generalized Kirchhoff conditions at the branching points of a network-like region (nodal points of the region). When using difference approximations of the initial-boundary value problem operator, the approximation error and stability conditions for the difference scheme are established. The characteristic properties of the locally one-dimensional method and the sweep method utilized to solve the stated problem are studied. An algorithm for the numerical solution of the stated problem is proposed, a computer program is designed, and a computational experiment is carried out on a series of applied problems. The findings are of interest in the analysis of applied problems of multiphase continuum media transfer along network-like 3D carriers.

Keywords: initial-boundary value transfer problem, network (directed graph), continuous medium transfer, difference scheme, locally one-dimensional method.

For citation: Tran D. Locally one-dimensional method for the transfer equation of a continuous medium with distributed parameters on a network-like domain. *Modeling, Optimization and Information Technology*. 2022;10(2). Available from: <u>https://moitvivt.ru/ru/journal/pdf?id=1141</u> DOI: 10.26102/2310-6018/2022.37.2.008 (In Russ.).

Введение

Работа продолжает исследования, приведенные в [1], и посвящена анализу характерных свойств локально-одномерного метода и развитию принципов построения многомерных разностных схем динамики сплошной среды с распределенными параметрами на сетеподобной области. В основе локально-одномерного метода лежит понятие суммарной аппроксимации схемы [2]. Аппроксимация дифференциального оператора исходной задачи приводит к неявной разностной схеме. Многомерные разностные схемы можно строить локально-одномерным методом, используя промежуточные слои [3]. Полученные результаты используются для анализа начальнокраевых задач, имеющих интересные аналогии с многофазными задачами многомерной гидродинамики [4, 5].

Постановка задачи

Рассмотрим начально-краевую задачу с многомерной пространственной переменной, принадлежащей евклидову пространству $\Re^n (n \ge 2)$. Введем следующие обозначения, аналогичные используемым в работах [6, 7]. Обозначим через \Im сетеподобную область, содержащую подобласти \Im_m , попарно примыкающие друг к другу посредством поверхностей S_l (поверхности примыкания); каждая разделяющая подобласти поверхность S_l является частью границ $\partial \Im_m$ этих подобластей. Таким образом, область \Im представляется в виде объединений \Im_m и S_l : $\Im = \left(\bigcup_{i=1}^{M} \Im_m\right) \cup \left(\bigcup_{i=1}^{L} S_l\right)$,

а ее граница имеет вид $\partial \mathfrak{T} = \left(\bigcup_{m=1}^{M} \partial \mathfrak{T}_{m}\right) \setminus \left(\bigcup_{l=1}^{L} S_{l}\right)$. Места примыкания подобластей \mathfrak{T}_{m} (узловые места) определяются поверхностями примыкания и являются местами ветвления, которые будут обозначаться символом $\xi = \bigcup_{l=1}^{p} \xi_{p}$.

Обозначим через $U(x, t) = U(x_1, x_2, ..., x_n, t)$ функцию, определяющую количественные характеристики сплошной среды, например, распределение температуры в области $\Im \times [0,T]$, где $0 < T < \infty$ фиксированная постоянная. В области $\Im \times [0,T]$ рассмотрим дифференциальное уравнение, описывающее процесс переноса сплошной среды:

$$\frac{\partial U}{\partial t} = \sum_{\alpha=1}^{n} \frac{\partial}{\partial x_{\alpha}} \left(a_{\alpha}(x_{\alpha}) \frac{\partial U}{\partial x_{\alpha}} \right)$$
(1)

с условиями примыкания в каждом узловом месте $\xi_p(p=\overline{1,P})$:

$$U|_{S_{l}^{+}(\xi_{p})} = U|_{S_{l}^{-}(\xi_{p})}, \qquad (2)$$

$$\sum_{l=1}^{L_p} a_{\alpha} \left. \frac{\partial U}{\partial \overline{n}_l^+} \right|_{S_l^+(\xi_p)} + \sum_{l=1}^{L_p} b_{\alpha} \left. \frac{\partial U}{\partial \overline{n}_l^-} \right|_{S_l^-(\xi_p)} = 0, \ \alpha = \overline{1, n} .$$
⁽³⁾

Здесь $S_l^+(\xi_p)$ и $S_l^-(\xi_p)$ означают односторонние поверхности $S_l(\xi_p)$, определяемые по направлению внешней и внутренней нормалей \overline{n}_l^+ и \overline{n}_l^- к поверхностям $S_l^+(\xi_p)$ и $S_l^-(\xi_p)$, соответственно; значения $U|_{S_l^+(\xi_p)}$ и $U|_{S_l^-(\xi_p)}$ описывают количественные характеристики на односторонних поверхностях $S_l^+(\xi_p)$ и $S_l^-(\xi_p)$ поверхности $S_l(\xi)$; $a_{\alpha} \frac{\partial U}{\partial \overline{n}_l^+}|_{S_l^+(\xi_p)}$ и $b_{\alpha} \frac{\partial U}{\partial \overline{n}_l^-}|_{S_l^-(\xi_p)}$ определяют величины потоков сплошной среды, проходящих через поверхность $S_l(\xi_p)$.

Замечание. В прикладной теплофизике уравнение (1) характеризует процесс переноса тепла по сетеподобной области \Im в соответствии с классическим законом Фурье, здесь функции $a_{\alpha}(x_{\alpha})$, $\alpha = \overline{1, n}$, являются коэффициентами теплопроводности теплоносителя, описывающими теплофизические свойства материала теплоносителя; соотношение (2) означает не изменение значений температур в каждом узловом месте ξ_p , $p = \overline{1, P}$; соотношении (3) – балансные равенства тепловых потоков в каждом узловом месте ξ_p , $p = \overline{1, P}$ в соответствии с обобщенным законом Кирхгофа.

Для системы уравнений (1)-(3) устанавливаются начальное

$$U(x,0) = \varphi(x), \ x \in \mathfrak{I}, \tag{4}$$

и граничное условия

$$U\Big|_{\partial\mathfrak{I}} = 0. \tag{5}$$

Таким образом, начально-краевая задача (1)–(5) определяет математическую модель процесса переноса сплошной среды по сетеподобному носителю, математическое описание которого определяется областью Э.

Разностные схемы

Построим дискретную область $\omega_{\mathfrak{I}}$, которая является сеткой области $\mathfrak{I} \times [0,T]$, состоящей из точек $(x_i, t_j), i = \overline{1, N}, j = \overline{0, K}$:

$$\begin{split} & \omega_{\mathfrak{I}} = \bigcup_{m=1}^{M} \omega_{\mathfrak{I}_{m}} , \\ & \omega_{\mathfrak{I}_{m}} = \left\{ \left(x_{i_{m}}, t_{j} \right) : x_{i_{m}} \in \mathfrak{I}_{m}, i_{m} = \overline{1, N_{m}}, j = \overline{0, K}; m = \overline{1, M} \right\}; \end{split}$$

где

 $= \left(i_1h_1, i_2h_2, \dots, i_{\alpha}h_{\alpha}, \dots, i_nh_n\right), \ i_{\alpha} = \overline{0, N_{\alpha}}; \ t_j = j\tau.$

 $x_{i_m} = (x_1^{(i_m)}, x_2^{(i_m)}, ..., x_{\alpha}^{(i_m)}, ..., x_n^{(i_m)}) =$

 h_{α} , τ являются шагами пространственно-временной разностной сетки ω_{3} . Точки (x_{i}, t_{j}) называются узлами сетки ω_{3} ; функции, определенные на сетке ω_{3} , называются сеточными функциями.

Рассмотрим начально-краевую задачу в терминах сеточных функций, с областью определения ω_3 . Функцию U(x, t) заменим сеточной функцией, которую определим следующим образом: $u_{i_{\alpha}}^{j} = u(i_{\alpha}h_{\alpha}, j\tau)$, $i_{\alpha} = 0, 1, ..., N_{\alpha}$; j = 0, 1, ..., M; $\alpha = 1, 2, ..., n$. Сеточные функции для $\varphi(x)$, $a_{\alpha}(x_{\alpha})$ определим аналогично: $\varphi_{i_{\alpha}} = \varphi(i_{\alpha}h_{\alpha})$, $a_{\alpha}^{(i_{\alpha})} = a_{\alpha}(i_{\alpha}h_{\alpha})$.

Каждый из отрезков $[t_j, t_{j+1}]$ разобьем на *n* равных частей, получим промежуточные (дробные) моменты времени $t_{j+\frac{\alpha}{n}} = t_j + \frac{\alpha}{n}\tau = (j+\frac{\alpha}{n})\tau$; $t_{j+\frac{\alpha-1}{n}} \le t_j \le t_{j+\frac{\alpha}{n}}$. Для построения многомерной разностной схемы, позволяющей найти при $t = t_{j+1}$ (на целых шагах) численное решение уравнения (1), в каждый из моментов $t_{j+\frac{\alpha}{n}}$ решается одномерное дифференциальное уравнение параболического типа:

$$\frac{1}{n}\frac{\partial U}{\partial t} = \frac{\partial}{\partial x_{\alpha}} \left(a_{\alpha}(x_{\alpha})\frac{\partial U}{\partial x_{\alpha}} \right)$$

Для решения задачи (1) – (5) построим конечно-разностный аналог (разностную схему) на сетке ω_3 :

$$\frac{u_{i_{\alpha}}^{j+\frac{\alpha}{n}}-u_{i_{\alpha}}^{j+\frac{\alpha-1}{n}}}{\tau} = \frac{a_{\alpha}^{(i_{\alpha}+1)} \frac{u_{i_{\alpha}+1}^{j+\frac{\alpha}{n}}-u_{i_{\alpha}}^{j+\frac{\alpha}{n}}}{h_{\alpha}} - a_{\alpha}^{(i_{\alpha})} \frac{u_{i_{\alpha}}^{j+\frac{\alpha}{n}}-u_{i_{\alpha}-1}^{j+\frac{\alpha}{n}}}{h_{\alpha}}}{h_{\alpha}},$$

$$\begin{split} \sum_{l=1}^{L_{p}} a_{\alpha} \frac{u_{i_{\alpha}^{*}+1}^{j+\frac{\alpha}{n}} - u_{i_{\alpha}^{*}}^{j+\frac{\alpha}{n}}}{h_{\alpha}} \bigg|_{S_{l}^{+}(\xi_{p})} + \sum_{l=1}^{L_{p}} b_{\alpha} \frac{u_{i_{\alpha}^{*}}^{j+\frac{\alpha}{n}} - u_{i_{\alpha}^{*}-1}^{j+\frac{\alpha}{n}}}{h_{\alpha}} \bigg|_{S_{l}^{-}(\xi_{p})} = 0, \\ u_{i_{\alpha}}^{0} = \varphi_{i_{\alpha}}, \\ u_{i_{\alpha}}^{j+\frac{\alpha}{n}} \bigg|_{\partial \Gamma} = 0. \end{split}$$

Пример численного решения с анализом погрешности решения

Для упрощения представления результатов исследования начально-краевая задача рассматривается для следующих двух случаев.

1. Двумерная область $\Im \subset \Re^2$, состоящая из подобластей \Im_k (k = 1, 2, 3) с узловыми местами ξ_1, ξ_2 (двухсторонними поверхностями примыкания S_1 и S_2). Структура такой области представлена на Рисунке 1.

Рисунок 1 – Структура расчетной области $\mathfrak{I} \subset \mathfrak{R}^2$ Figure 1 – Structure of computational domain $\mathfrak{I} \subset \mathfrak{R}^2$

Процесс распределения тепла в области \mathfrak{I}_T , $\mathfrak{I}_T = \mathfrak{I} \times (0, \mathbb{T})$ записывается в виде:

$$\frac{\partial u(x, y, t)}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\partial u(x, y, t)}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial u(x, y, t)}{\partial y} \right), x, y, t \in \mathfrak{I}_T \setminus \{S_1, S_2\},$$

условия примыкания в узловых местах $\xi_p(p=1,2)$:

$$\begin{aligned} u(x, y, t)|_{S_{1}^{+}} &= u(x, y, t)|_{S_{1}^{-}}, \frac{\partial u(x, y, t)}{\partial y}|_{S_{1}^{+}} = \frac{\partial u(x, y, t)}{\partial y}|_{S_{1}^{-}}, \\ u(x, y, t)|_{S_{2}^{+}} &= u(x, y, t)|_{S_{2}^{-}}, \frac{\partial u(x, y, t)}{\partial x}|_{S_{2}^{+}} = \frac{\partial u(x, y, t)}{\partial x}|_{S_{2}^{-}}, \end{aligned}$$

начальное условие:

$$u(x, y, 0)_{\mathfrak{I}_m} = \cos x \cos y , \ m = \overline{1, \mathfrak{I}},$$

граничные условия:

$$u(0, y, t)_{y \in \mathfrak{I}_{m}} = e^{-2t} \cos y, m = \overline{1, 3}, u\left(\frac{\pi}{4}, y, t\right)_{y \in \left[0, \frac{\pi}{6}\right] \cup \left[\frac{\pi}{3}, \frac{\pi}{2}\right]} = e^{-2t} \cos \frac{\pi}{4} \cos y,$$
$$u\left(\frac{\pi}{2}, y, t\right)_{y \in \mathfrak{I}_{3}} = 0, u(x, 0, t)_{x \in \mathfrak{I}_{1}} = e^{-2t} \cos x, u\left(x, \frac{\pi}{6}, t\right)_{x \in \mathfrak{I}_{3}} = e^{-2t} \cos \frac{\pi}{6} \cos x,$$
$$u\left(x, \frac{\pi}{3}, t\right)_{x \in \mathfrak{I}_{3}} = e^{-2t} \cos \frac{\pi}{3} \cos x, u\left(x, \frac{\pi}{2}, t\right)_{x \in \mathfrak{I}_{2}} = 0.$$

Численные расчеты поля распределения u(x, y, t) проводились шагом $\tau = 10^{-4}$, $h_x = 0.1571$, $h_y = 0.1047$. При $t = 10^{-3}$ результаты указаны в таблицах 1 и 2.

Таблица 1 – Значения u(x, y, t) при t = 0Table 1 – Values of u(x, y, t) at t = 0

1.0000	0.9781	0.9135	0.8090	0.6691	0.5000	0.5000	0.3090	0.1045	0
0.9877	0.9661	0.9023	0.7991	0.6609	0.4938	0.4938	0.3052	0.1032	0
0.9511	0.9303	0.8688	0.7694	0.6364	0.4755	0.4755	0.2939	0.0994	0
0.8910	0.8715	0.8140	0.7208	0.5962	0.4455	0.4455	0.2753	0.0931	0
0.8090	0.7913	0.7391	0.6545	0.5413	0.4045	0.4045	0.2500	0.0846	0
0.7071	0.6917	0.6460	0.5721	0.4731	0.3536	0.3536	0.2185	0.0739	0
			0.5721	0.4731	0.3536				
			0.4755	0.3933	0.2939				
			0.3673	0.3038	0.2270				
			0.2500	0.2068	0.1545				
			0.1266	0.1047	0.0782				
			0	0	0	1			

Таблица 2 – Значения u(x, y, t) при $t = 10^{-3}$

Table 2 – Values of u(x, y, t) at $t = 10^{-3}$

0.9980	0.9772	0.9126	0.8082	0.6685	0.4965	0.4965	0.3087	0.1044	0
0.9857	0.9651	0.9014	0.7983	0.6602	0.4904	0.4904	0.3049	0.1031	0
0.9492	0.9293	0.8680	0.7687	0.6357	0.4722	0.4722	0.2936	0.0993	0
0.8892	0.8707	0.8132	0.7201	0.5956	0.4424	0.4424	0.2751	0.0930	0
0.8074	0.7905	0.7383	0.6539	0.5408	0.4017	0.4017	0.2497	0.0845	0
0.7057	0.6903	0.6447	0.5644	0.4668	0.3528	0.3528	0.2181	0.0738	0
			0.5644	0.4668	0.3528				
			0.4750	0.3929	0.2933				
			0.3669	0.3035	0.2265				
			0.2497	0.2066	0.1542				
			0.1264	0.1046	0.0781				
			0	0	0				

2. Трехмерная область $\Im \subset \Re^3$, состоящая из подобластей \Im_k (k = 1, 2, 3) с узловыми местами ξ_1, ξ_2 (двухсторонними поверхностями примыкания S_1 и S_2). Структура такой области представлена на Рисунке 2.

Рисунок 2 – Структура расчетной области $\mathfrak{I} \subset \mathfrak{R}^3$ Figure 2 – Structure of computational domain $\mathfrak{I} \subset \mathfrak{R}^3$

Процесс распределения тепла в области \mathfrak{T}_T , $\mathfrak{T}_T = \mathfrak{T} \times (0, T)$ записывается в виде:

$$\frac{\partial u(x, y, z, t)}{\partial t} = \frac{\partial}{\partial x} \left(\frac{\partial u(x, y, z, t)}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial u(x, y, z, t)}{\partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\partial u(x, y, z, t)}{\partial z} \right), \quad x, y, z, t \in \mathfrak{I}_T \setminus \{S_1, S_2\},$$

условия примыкания в узловых местах $\xi_p(p=1,2)$:

$$\begin{aligned} u(x, y, z, t) \Big|_{S_1^+} &= u(x, y, z, t) \Big|_{S_1^-}, \ \frac{\partial u(x, y, z, t)}{\partial y} \Big|_{S_1^+} = \frac{\partial u(x, y, z, t)}{\partial y} \Big|_{S_1^-}, \\ u(x, y, z, t) \Big|_{S_2^+} &= u(x, y, z, t) \Big|_{S_2^-}, \ \frac{\partial u(x, y, z, t)}{\partial x} \Big|_{S_2^+} = \frac{\partial u(x, y, z, t)}{\partial x} \Big|_{S_2^-}, \end{aligned}$$

начальное условие:

$$u(x, y, z, 0)_{\mathfrak{I}_m} = \cos x \cos y \cos z, \ m = \overline{1, 3},$$

граничные условия:

$$u(0, y, z, t)_{y, z \in \mathfrak{I}_m} = e^{-2t} \cos y \cos z, m = 1, 3,$$
$$u\left(\frac{\pi}{4}, y, z, t\right)_{y \in \left[0, \frac{\pi}{6}\right] \left[\frac{\pi}{32}\right] : z \in \left[0, \frac{\pi}{2}\right]}} = e^{-2t} \cos \frac{\pi}{4} \cos y \cos z,$$

$$u\left(\frac{\pi}{2}, y, z, t\right)_{y, z \in \mathfrak{I}_{3}} = 0, \ u\left(x, 0, z, t\right)_{x, z \in \mathfrak{I}_{1}} = e^{-2t} \cos x \cos z ,$$
$$u\left(x, \frac{\pi}{6}, z, t\right)_{x, z \in \mathfrak{I}_{3}} = e^{-2t} \cos \frac{\pi}{6} \cos x \cos z ,$$
$$u\left(x, \frac{\pi}{3}, z, t\right)_{x, z \in \mathfrak{I}_{3}} = e^{-2t} \cos \frac{\pi}{3} \cos x \cos z , \ u\left(x, \frac{\pi}{2}, z, t\right)_{x, z \in \mathfrak{I}_{2}} = 0 .$$

Численные расчеты поля распределения u(x, y, t) проводились шагом $\tau = 10^{-4}$, $h_x = 0.1571$, $h_y = 0.1047$, $h_z = 0.3142$. При t = 0 результаты указаны в таблицах 3 (значения u(x, y, z, t) при z = 0), 4 (значения u(x, y, z, t) при z = 0.3142), 5 (значения u(x, y, z, t) при $z = \frac{\pi}{2}$).

Таблица 3 – Значения u(x, y, z, t) при z = 0 и t = 0Table 3 – Values of u(x, y, z, t) at z = 0 and t = 0

1.0000	0.9781	0.9135	0.8090	0.6691	0.5000	0.5000	0.3090	0.1045	0.0000
0.9877	0.9661	0.9023	0.7991	0.6609	0.4938	0.4938	0.3052	0.1032	0.0000
0.9511	0.9303	0.8688	0.7694	0.6364	0.4755	0.4755	0.2939	0.0994	0.0000
0.8910	0.8715	0.8140	0.7208	0.5962	0.4455	0.4455	0.2753	0.0931	0.0000
0.8090	0.7913	0.7391	0.6545	0.5413	0.4045	0.4045	0.2500	0.0846	0.0000
0.7071	0.6917	0.6460	0.5721	0.4731	0.3536	0.3536	0.2185	0.0739	0.0000
			0.5721	0.4731	0.3536				
			0.4755	0.3933	0.2939				
						=			
			0.3673	0.3038	0.2270				
			0.2500	0.2068	0.1545				
			0.1266	0.1047	0.0782	1			
			0.0000	0.0000	0.0000	1			
			-						

Таблица 4 – Значения u(x, y, z, t) при z = 0.3142 и t = 0Table 4 – Values of u(x, y, z, t) at z = 0.3142 and t = 0

0.9511	0.9303	0.8688	0.7694	0.6364	0.4755	0.4755	0.2939	0.0994	0
0.9393	0.9188	0.8581	0.7599	0.6285	0.4697	0.4697	0.2903	0.0982	0
0.9045	0.8847	0.8263	0.7318	0.6052	0.4523	0.4523	0.2795	0.0945	0
0.8474	0.8289	0.7741	0.6856	0.5670	0.4237	0.4237	0.2619	0.0886	0
0.7694	0.7526	0.7029	0.6225	0.5148	0.3847	0.3847	0.2378	0.0804	0
0.6725	0.6578	0.6144	0.5441	0.4500	0.3362	0.3362	0.2078	0.0703	0
			0.5441	0.4500	0.3362				
			0.4523	0.3741	0.2795				
			0.3493	0.2889	0.2159				
			0.2378	0.1967	0.1469				
			0.1204	0.0996	0.0744				
			0	0	0.0000				

Таблица 5 – Значения	u(x, y, z, t)	при	$z = \frac{\pi}{2}$ и $t = 0$
----------------------	---------------	-----	-------------------------------

Table 5 – Values of	u(x, y, z, t)	at $z = \frac{\pi}{2}$	and $t = 0$
---------------------	---------------	------------------------	-------------

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
	0	0	0				
	0	0	0				
	0	0	0				
	0	0	0				

При $t = 10^{-3}$ результаты указаны в Таблицах 6 (значения u(x, y, z, t) при z = 0), 7 (значения u(x, y, z, t) при z = 0.3142), 8 (значения u(x, y, z, t) при $z = \frac{\pi}{2}$).

0

0

Таблица 6 – Значения u(x, y, z, t) при z = 0 и $t = 10^{-3}$ Table 6 – Values of u(x, y, z, t) at z = 0 and $t = 10^{-3}$

0

0

0

0

0.9822	0.9607	0.8972	0.7946	0.6572	0.4911	0.4911	0.3035	0.1027	0
0.9701	0.9489	0.8862	0.7848	0.6491	0.4850	0.4850	0.2998	0.1014	0
0.9341	0.9137	0.8533	0.7557	0.6250	0.4670	0.4670	0.2886	0.0976	0
0.8751	0.8560	0.7995	0.7080	0.5856	0.4376	0.4376	0.2704	0.0915	0
0.7946	0.7772	0.7259	0.6428	0.5317	0.3973	0.3973	0.2455	0.0831	0
0.6945	0.6793	0.6345	0.5619	0.4647	0.3472	0.3472	0.2146	0.0726	0
			0.5619	0.4647	0.3472				

0.5619	0.4647	0.3472
0.4670	0.3863	0.2886
0.3607	0.2984	0.2229
0.2455	0.2031	0.1518
0.1243	0.1028	0.0768
0	0	0

Таблица 7 – Значения u(x, y, z, t) при z = 0.3142 и $t = 10^{-3}$ Table 7 – Values of u(x, y, z, t) at z = 0.3142 and $t = 10^{-3}$

0.9341	0.9137	0.8533	0.7557	0.6250	0.4670	0.4670	0.2886	0.0976	0
0.9226	0.9102	0.8501	0.7529	0.6227	0.4620	0.4620	0.2876	0.0973	0
0.8884	0.8765	0.8186	0.7249	0.5996	0.4449	0.4449	0.2769	0.0937	0
0.8323	0.8211	0.7669	0.6792	0.5617	0.4168	0.4168	0.2594	0.0878	0
0.7557	0.7456	0.6963	0.6167	0.5100	0.3784	0.3784	0.2355	0.0797	0
0.6605	0.6461	0.6034	0.5321	0.4401	0.3303	0.3303	0.2041	0.0690	0
			0.5321	0.4401	0.3303				
			0.4480	0.3706	0.2745				

0.3461	0.2862	0.2120
0.2355	0.1948	0.1443
0.1192	0.0986	0.0731
0	0	0

Таблица 8 – Значения u(x, y, z, t) при $z = \frac{\pi}{2}$ и $t = 10^{-3}$

Table 8 – Values of u(x, y, z, t) at $z = \frac{\pi}{2}$ and $t = 10^{-3}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
			0	0	0				

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

Заключение

В работе рассмотрен анализ начально-краевой задачи (1)-(6) с многомерной пространственной переменной, принадлежащей евклидову пространству \Re^n ($n \ge 2$) для уравнения переноса сплошной среды с распределенными параметрами на сетеподобной области. При этом использованы локально-одномерный метод и метод прогонки [2]. Предложен алгоритм численного решения рассматриваемой задачи. В исследовании получены результаты для начально-краевой задачи (1)-(6) в частных случаях: n = 2 и n = 3. Следует отметить, что представленное исследование открывает путь анализа прикладных задач переноса многофазных сплошных сред по сетеподобным 3D носителям, а также в изучении сетевых процессов прикладного характера [8-10].

СПИСОК ИСТОЧНИКОВ

- 1. Тран З., Провоторов В.В. Метод конечных разностей для уравнения переноса с распределенными параметрами на сети. *Моделирование, оптимизация и информационные технологии.* 2021;9(3). Доступно по: <u>https://moitvivt.ru/ru/journal/pdf?id=1019</u> (дата обращения: 05.02.2022). DOI: 10.26102/2310-6018/2021.34.3.012.
- 2. Тихонов А.Н., Самарский А.А. Уравнения математической физики. Изд. 5-е. М. Наука; 1977. 736 с.
- 3. Калиткин Н.Н *Численные методы*. Главная редакция физико-математической литературы из-ва «Наука». М.; 1978.
- 4. Provotorov V.V., Provotorova E.N. Optimal control of the linearized Navier-Stokes system in a netlike domain. *Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes.* 2017;13(4):431–443. Available at: <u>https://doi.org/10.21638/11702/spbu10.2017.409</u> (accessed on 05/02/2022).

- Artemov M.A., Baranovskii E.S., Zhabko A.P., Provotorov V.V. On a 3D model of nonisothermal flows in a pipeline network. *Journal of Physics. Conference Series*. 2019;(1203). Article ID 012094. Available at: <u>https://doi.org/10.1088/1742-6596/1203/1/012094</u> (accessed on 05/02/2022).
- Zhabko A.P., Provotorov V.V., Balaban O.R. Stabilization of weak solutions of parabolic systems with distributed parameters on the graph. *Vestnik of Saint Petersburg University*. *Applied Mathematics. Computer Science. Control Processes.* 2019;15(2):187–198. Available at: <u>https://doi.org/10.21638/11702/spbu10.2019.203</u> (accessed on 05/02/2022).
- Zhabko A.P., Nurtazina K.B., Provotorov V.V. About one approach to solving the inverse problem for parabolic equation. *Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes.* 2019;15(3):323–336. Available at: <u>https://doi.org/10.21638/11702/spbu10.2019.303</u> (accessed on 05/02/2022).
- 8. Тран З., Парт А.А. Параметрическая оптимизация процесса переноса сплошной среды по сетевому носителю. *Моделирование, оптимизация и информационные технологии*. 2021;9(4). Доступно по: <u>https://moitvivt.ru/ru/journal/pdf?id=1090</u> (дата обращения: 05.02.2022). DOI: 10.26102/2310-6018/2021.35.4.037.
- 9. Sergeev S.M., Sidnenko T.I., Sidnenko D.B. Distribution centers for agriculture, their modeling. *International Scientific School «Paradigma» Summer-2016 Selected Papers*. Yelm, WA, USA. 2016;92–97 (accessed on 05.02.2022).
- 10. Iliashenko O., Sergeev S., Krasnov S. Calculation of high-rise construction limitations for non-resident housing fund in megacities. *E3S Web of Conferences*. 2018;03006 (accessed on 05/02/2022).

REFERENCES

- Tran D., Provotorov V.V. Finite difference method for transfer equation with distributed parameters on the network. *Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii* = *Modeling, Optimization and Information Technology*. 2021;9(3). Available from: <u>https://moitvivt.ru/ru/journal/pdf?id=1019</u> (accessed on 05/02/2022). DOI: 10.26102/2310-6018/2021.34.3.012 (In Russ.)
- 2. Tikhonov A.N., Samarskii A.A. *Uravneniya matematicheskoi fiziki*. Izd. 5-e. M. Nauka; 1977. 736 p. (In Russ.)
- 3. Kalitkin N.N *Chislennye metody*. Glavnaja redakcija fiziko-matematicheskoj literatury izva «Nauka». M.; 1978. (In Russ.)
- 4. Provotorov V.V., Provotorova E.N. Optimal control of the linearized Navier-Stokes system in a netlike domain. *Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes.* 2017;13(4):431–443. Available at: <u>https://doi.org/10.21638/11702/spbu10.2017.409</u> (accessed on 05/02/2022).
- Artemov M.A., Baranovskii E.S., Zhabko A.P., Provotorov V.V. On a 3D model of nonisothermal flows in a pipeline network. *Journal of Physics. Conference Series*. 2019;(1203). Article ID 012094. Available at: <u>https://doi.org/10.1088/1742-6596/1203/1/012094</u> (accessed on 05/02/2022).
- Zhabko A.P., Provotorov V.V., Balaban O.R. Stabilization of weak solutions of parabolic systems with distributed parameters on the graph. *Vestnik of Saint Petersburg University*. *Applied Mathematics. Computer Science. Control Processes.* 2019;15(2):187–198. Available at: <u>https://doi.org/10.21638/11702/spbu10.2019.203</u> (accessed on 05/02/2022).
- Zhabko A.P., Nurtazina K.B., Provotorov V.V. About one approach to solving the inverse problem for parabolic equation. *Vestnik of Saint Petersburg University*. *Applied Mathematics. Computer Science. Control Processes*. 2019;15(3):323–336. Available at: https://doi.org/10.21638/11702/spbu10.2019.303 (accessed on 05/02/2022).

- Tran D., Part A.A. Parametric optimization of the continuous medium transferring process over a network carrier. *Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, Optimization and Information Technology.* 2021;9(4). Available from: <u>https://moitvivt.ru/ru/journal/pdf?id=1090</u> (accessed on 05/02/2022). DOI: 10.26102/2310-6018/2021.35.4.037. (In Russ.)
- 9. Sergeev S.M., Sidnenko T.I., Sidnenko D.B. Distribution centers for agriculture, their modeling. *International Scientific School «Paradigma» Summer-2016 Selected Papers*. Yelm, WA, USA. 2016;92–97 (accessed on 05.02.2022).
- 10. Iliashenko O., Sergeev S., Krasnov S. Calculation of high-rise construction limitations for non-resident housing fund in megacities. *E3S Web of Conferences*. 2018;03006 (accessed on 05/02/2022).

ИНФОРМАЦИЯ ОБ АВТОРАХ / INFORMATION ABOUT THE AUTHORS

Тран Зуй, аспирант кафедры уравнений в частных Tran Duy, Postgraduate Student, теории вероятностей, производных И Department Of Equations In Partial математический факультет, Воронежский Derivatives And Probability Theory, государственный университет, Воронеж, Faculty Of Mathematics, Voronezh State Российская Федерация. University, Voronezh, Russian Federation. e-mail: tranduysp94@gmail.com

Статья поступила в редакцию 15.03.2022; одобрена после рецензирования 19.04.2022; принята к публикации 28.04.2022.

The article was submitted 15.03.2022; approved after reviewing 19.04.2022; accepted for publication 28.04.2022.