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Abstract. Sensor devices and biomedical imaging technologies used in clinical application scenarios are
essential for providing a comprehensive portrait of patients’ state, but these technologies, despite their
outstanding advantages, have their inherent disadvantages. Beginning with the principle of
complementary images of medical imaging techniques, this review examines the functional near-
infrared spectroscopy (fNIRS) technique and its use as a hybrid system. The fNIRS technology delivers
impressive results in terms of the biological signal classification accuracy, but its use as a hybrid system
with electroencephalography (EEG) and electromyography (EMG) achieved better results because it has
become a complementary tool to fill the deficit of the common technology with it, and this has been
highlighted in this review. The results show that the superiority in the biological signal classification
accuracy provided by hybrid systems from fNIRS with EEG and EMG would provide a comprehensive
and objective assessment of the patients’ state from the stage of illness to healing. In conclusion, we
have no indication from the scientific studies of the previous four years (2020-2023) that demonstrate
which of the hybrid systems is better than others when used in clinical practice, and this encourages
further in-depth studies to validate the combination of methods to prove their success and preference.
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CnexTpockonusi B okojonHppakpacuom quanazone (fNIRS) kak
ruOpuaHas cucremMa: 0030p
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Benecopoockuii cocyoapcmeennulii HAYUOHATLHBLI UCCIE008AMENbCKULL YHUBSEPCUMEN,
beneopoo, Poccuiickas @edepayus

Pe3tome. CeHCOpHBIE YCTPOICTBA U TEXHOJIOTUM OMOMEIMIIMHCKON BU3yalln3ally, HCIIOIb3yEeMbIE B
CIICHApHUAX KIMHUYECKOTO MPUMEHEHHs, HEOOXOIUMBI JJIsl MTOMYYCHHUS MOTHON KapTUHBI COCTOSIHUS
MAIMEHTOB, HO O3TH TEXHOJOTHH, HECMOTpSl Ha MX BBIJAIOIIUECS MPEHMYIIECTBA, HE JHUIIEHBI
HenocTaTkoB. Vcxois n3 NpUHIMIIA B3aUMOJIOTIOIHAEMOCTH METOJJOB MEANLIMHCKON BU3yaIU3alny, B
3TOM 0030pe ocBemaercs (QyHKIMOHAJIbHAs TEXHOJOrHs ONMKHEH MH(pPaKpacHOH CIEKTPOCKONHHU
(fNIRS) u ee wucmonb3oBanume B KadectBe rudpuanoit cucrembl. fNIRS TtexHomorust mocruria
BIICUATIISIOLINX PE3YJBTATOB C TOUKU 3PEHHSI TOYHOCTH Kilaccu(UKaK OMOJIOTMIECKUX CUTHAJIOB, HO
ee HCIOJb30BaHHME B KauyecTBe THOPUOHON cuUCTeMbl ¢ dJekTposHuedanorpadueit (33I) u
anekTpomuorpadueit (3MI') mo3BOINIO TOCTHYH O0Jiee BEICOKUX PE3yJIbTAaTOB, TOCKOJBKY OHA CTaja
JIOTIOJTHUTENEHBIM WHCTPYMEHTOM JUISS BOCTIOJIHEHHS JeQUIMTa JPYrodl TEXHOJIOTHH, W 3TO
NOJYEPKUBAJIOCh B paMKax HacTosiero o63opa. llomydeHHble B Xone HCCIEIOBaHUS PE3YJIbTaThl
MOKa3alli, 4YTO TMPEBOCXOJICTBO B  KJIACCH(PHUKAIUK TOYHOCTH OHOJIOTMYECKUX CHTHAJIOB,
obecneunBaemMbix ruOpuaHbEIME cricTeMamu oT FNIRS ¢ D3I, DMI', obecreurio 661 BCECTOPOHHIO U
00BEKTHBHYIO OLIEHKY COCTOSIHUS MTALIMEHTOB OT CTaanH 3a00JI€BaHus 10 BBI3OPOBICHHS. B HayuHBIX
MCCIIeIOBAHUAX IpeAbITyIuX yeTbipex et (20202023 rr.) HeT yKa3aHuil Ha TO, KaKasi U3 THOPUAHBIX
CHCTEM JIyHdlIlle IPYTUX MPU UCTIOJIb30BAaHUHN B KIIMHUYECKOU MPAKTHKE, ¥ 3TO MOOYKIAET K JaTbHEHIIINM
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Introduction

Scientific history has demonstrated that no technical tool has continuous endurance; its
work may end or be followed by sophisticated sequences to keep up with scientific modernity.
Recently, medical imaging technologies have begun to appear in various fields, especially in
medicine. The variety of medical imaging techniques aims at the accurate study of all organs
and components of the body with the view to diagnosing the affected organ or component and
treating, activating, or rehabilitating it as required by the need of that organ and with greater
benefit: the focus of neuroimaging techniques is the study of brain activity. Note that these
medical imaging techniques are not limited to a single scientific concept. In addition, they fall
within a multidisciplinary concept. For example, neural interfaces and their development are
closely related to the concept of linear physics [1], and the concept of medical imaging
technologies is related to biological concepts, engineering, and artificial intelligence.

At the intersection of sciences, medical imaging techniques, especially functional near-
infrared spectroscopy technique (fNIRS), are the obvious example that intersects these sciences
according to the concept of BCI (brain computer interfaces). Using neuroimaging methods such
as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI), and fNIRS based on BCI, which depends functionally on the real-
time detection of characteristic wavelength or patterns of brain activity and dynamically on the
transformation of the information obtained into control commands for external devices that
have become commonly used, such as wheelchairs, prostheses, and others. Increasing the
accuracy of the classification of BCI brain signal patterns is an ongoing challenge to create a
perfect BCI.

This classification includes a high and acceptable accuracy when it is a standard for non-
invasive BCI classifiers used for communication tasks, neurological rehabilitation or operator
assessment, but it is clearly insufficient and requires more accuracy due to the sensitivity of
their use to control external devices such as an artificial hand. Therefore, an important task is
to improve the accuracy of processing brain signals in real time and, as a result, increase the
accuracy in recognizing mental commands. This may be attributed to the creation of multimedia
hybrid BCls, or hybrid brain-computer interface systems (hereafter referred to as HBCIs) that
use several types of signals. The unique distinguishing characteristics of HBCIs is to take
advantage of different technologies, and this is what makes them widely used with hybrid
technologies as well and can be called this system (hybrid based on hybrid).

Recent scientific research has proven that the HBClIs application does not depend on
two hybrid technologies only in terms of operation, but also extends to different hybrid
technologies such as EEG-fNIRS [2] and EEG-EMG [3] and does not depend in terms of
application on a specific software, but also extends to the comprehensiveness of its application
in wide and different fields as controlling the movement of robots, detecting and preventing
brain diseases, monitoring and controlling normal and pathological cognitive activity and
others. EEG is non-invasive based on electrical activity of the nervous system still very low for
the exchange of information between the brain and the machine. EEG technology has proven
its presence in many fields, but in the field of its use in controlling artificial limbs it has not
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found application because of its disadvantages in this field. Like the context of this fNIRS which
IS a non-invasive neuroimaging technique based on chemical processes activity, due to its
advantages that compensate for the disadvantages of EEG, they may form a hybrid system for
artificial control. Among the various possible HBCIs, the hybrid EEG-fNIRS based is the most
studied because of the complementary characteristics of EEG and fNIRS. In terms of
classification accuracy and information transfer rate HBCIs could achieve a better overall
performance compared with unimodal BClIs [2]. MEG is a noninvasive method of brain imaging
and provides signals with higher spatiotemporal resolution, which is not present in fNIRS. It
covers the entire cerebral cortex (MEG) (Figure 1, a) enables recording events for up to
milliseconds as well as determining the sources of the magnetic field in the cerebral cortex with
high accuracy [4]. fNIRS is located above the frontal lobe area of the brain with a noticeable
delay period for recording events (Figure 1, b). By integrating MEG and fNIRS and based on
the additional benefits they provide, higher spatial and temporal resolution can be provided than
any other method [5]. This is because the hybrid system between the fNIRS and the MEG is
better to use than to use it independently.

a

Figure 1 — It is shown how (a) the entire cerebral cortex (MEG) and (b) the frontal lobe area (fNIRS)
are covered
Pucynoxk 1- Ilokazano, kak mOKpeIBaeTcs (a) Bcst Kopa rooBHoro mo3ra (MO1I) u (0) obnacth
no6ueix gouneit (FNIRS)

In the scientific literature focusing on surface electromyography (SEMG) which records
the electrical activity represented by muscle dynamics for action potentials that initiate muscle
contraction and force production and fNIRS, researchers have explored a variety of topics
related to physiological measurement techniques, where there were positive correlations
between EMG signals and fNIRS in all participants (Figure 2) [6].
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Figure 2 — EMG and fNIRS sensors are installed on the patient’s body to measure such parameters as
oxygen consumption and muscle activation
Pucynok 2 — OMI u fNIRS maTuuku ycTaHaBIMBAIOTCS Ha TEJIO MAI[MEHTA T H3MEPESHUS TaAKHX
nmapaMeTpoB, KakK HOTpe6JIeHI/I€ KHCJIOpOAa U MbII€YHAasA aKTUBHOCTD

fNIRS and fMRI are based on the principle (blood-oxygenation-level-dependent) which
(hereafter referred to as BOLD). Despite the fact that fNIRS and fMRI measure essentially the
same activity, in different approaches, fMRI uses the different magnetic properties of HbO and
HbR , while fNIRS uses the different optical properties of HBO and HbR (which absorb near-
infrared light at different frequencies [7, 8]. Activating motor imagery should lead to increased
coordination of oxygenation of the blood, thus creating doubt in the reliability of fNIRS for
BCI applications [9].

fNIRS provides a cost-effective and portable alternative to fMRI to assess cortical
activity changes based on circulatory signals. The spatial and temporal bases of the fMRI signal
and the concentration of fNIRS corresponding to the chromophore measurements are still not
completely clear. Fingerprinting of the brain indicates proven success with fMRI, whereas the
results of experimental studies using fNIRS show depending on the number of runs and brain
regions used for classification with an average classification accuracy ranging from 75 % to
98 %. Under the right conditions, brain fingerprinting with fNIRS is close to 99,9 % accuracy
found with fMRI [10]. While in assessment of the spatial correspondence between fNIRS and
fMRI hemodynamic responses in motor tasks, no statistically significant differences were
observed in the multimodal spatial correspondence between HbO, HbR, and HbT for motor
tasks. A hybrid approach to modeling fMRI data using their corresponding fMRI measurements
(HBO, HPR, and HbT) from acquired asynchronously, would help to identify the corresponding
active groups of motor-related areas [7]. That is, fNIRS models will continue to benefit from
systematic verification by fMRI, especially if they target a specific cortical area [11]. The
approach of fNIRS due to its being portable, wearable and high intensity combined and diffuse
optical tomography can be an important approach that can open new areas of neurology by
enabling functional neuroimaging of the human cortex with a resolution comparable to fMRI
in almost any environment and population [12]. fMRI is the gold standard for modern functional
neuroimaging, and despite its essential use in cognitive neuroscience and clinical research, its
disadvantages support the idea of using it as a technical combination with fNIRS.
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Numerous studies have shown that there is a growing trend and the possibility of their
use to complement each other when the use of fMRI appears likely because there is a risk of
using it independently [7]. In view of the shortcomings inherent in the above-mentioned
technologies, this review aims to point out fNIRS as a reliable technology for the formation of
a hybrid system for recording, analyzing and monitoring brain activity to perform various tasks
such as controlling the movement of prostheses, detecting brain diseases and monitoring
psychophysiological states, monitoringnormal and pathological cognitive activity and etc.

Materials and Methods

The purpose of this review is to explore the feasibility of fNIRS and its use as a hybrid
system with other medical technologies, particularly EEG and EMG. In addition, the
relationship between fNIRS with other technologies, such as MEG, fMRI, and diffuse optical
tomography technologies that related to the subject of the review, whether it is used as a stand-
alone system or as a hybrid system. This has been done by analyzing scientific articles, master’s
theses, and recent doctoral dissertations limited to the four years from 2020 to 2023.

We took upon ourselves the diversity of searching for sources that are strongly related
to our topic in reliable databases we searched in databases, namely, domain, Google Scholar,
and various other sites such as the first site https://scholar.google.com/ and others. In addition,
various links are indicated as https://www.mdpi.com/journal/sensors, https://www.refseek.com
and others, which are listed as reliable references at the end of the literature review. The search
direction centered on the keywords: HBCIs, fNIRS, fMRI, EEG and EMG. Finally, the relevant
articles were reviewed. The recommendations of experienced people and their comments were
considered by deleting and adding systematic reviews and targeted analysis.

HBClIs

Understanding brain functions is essential for efficient BCI applications, and its
development is closely related to physics. The classification of brain states can be performed in
real time in accordance with the registered brain activity caused either by spontaneous
physiological processes or by external stimulation using an intelligent BCI system. BCls are
usually divided into categories of unidirectional (receiving signals from the brain or sending
them to it) and bidirectional (allowing information to be exchanged in both directions), and this
depends on the direction of their work [13]. The classification of BCls in general is given below
[1, 14].

Control command-based classification

According to the type of control command given by the BCI operator, neural interfaces
can be classified as follows:

1. Active BCI uses changes in brain activity, directly and consciously controlled by the
operator of the neurointerface, regardless of external events, to receive control commands.

2. Reactive BCI detects and classifies the brain’s response (for example, evoked
potential) to external triggers (visual, auditory, tactile, etc.) for control commands.

3. Passive BCI analyzes the user’s current brain activity without any targeted
monitoring to obtain information about the actual state of the brain, for example, attention,
switching activity, emotional state, etc. As a task for raising hands to study possible cerebral
hemodynamics, the trigger is passive action [15].

Input data processing modality-based classification

The classification here is based on synchronization of the input data processing
modality, BCI can be classified as follows:

1. Synchronous BCI specializes in analyzing brain signals only during predefined time
intervals, whereas any brain signals are outside the pre-set time periods, they will be ignored.
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Thus, the operator can create commands only during certain periods of time determined
by synchronous. In fact, synchronous systems are reactive although they can also be passive.

2. Asynchronous BCI on the contrary, here the monitoring is continuously the signals
of the brain, regardless of the time the operator acts. Therefore, asynchronous BCI provides a
more natural human-machine interaction than synchronous BCI. However, asynchronous BCIs
are more complex and require large computational costs. Active and passive BCls are usually
asynchronous [16].

Invasive and noninvasive BCI and Brain-machine interfaces

The classification based on the type of electrophysiological recordings depending on
their invasivity can be classified as:

1. Noninvasive BCI limited to recording brain activity of the surface area of the head.
This approach has proven useful in helping patients develop and provide limited bandwidth
communication channels with the outside world.

2. Invasive BCI records brain activity intracranially using implanted electrodes.

And the above, the HBCIs are not limited to single data processing, but are based on
hybrid double and triple data processing, and this is what makes the HBCIs [9, 16, 17, 18]. The
main challenges of HBClIs is the control of prostheses or external devices in general by the
electrical activity of the brain as EEG [19] or by the chemical activity as fNIRS [20], whether
used individually or in a hybrid way [21]. A large percentage of the BCI system uses only one
type of physiological signal, while the HBCIs, which take the advantages of different
techniques, take two phases of the HBCIs, which combine active and passive neuron interfaces,
as shown in Figure 3 [1].

___________________________________________________________________________

Active BCI

Mental
Task
Detection

Mental
state
Estimation

Predicted
Mental
State

EEG

Commands

[ T P ——

_____________________________________

-------------------------------------

EEG

Figure 3 — Hybrid active-passive BCls
Pucynok 3 — I'nOpunnsie aktuBHble—n1accuBHble BCI

HBClIs of active and passive are more effective, enable estimation of the operator’s
mental state, and take advantages of different techniques such as fNIRS and EEG [17, 22, 23]
and takes advantages of hybrid technologies EEG-EMG [24]. In the context of a hybridization
system, a HBCIs can be in three types according to various signals of brain activity:

1. HBCIs when various reflected signals of brain activity are used.

2. HBCIs when signals of brain activity in conjunction with external signals of different
nature are used.

3. HBCIs when various physiological brain activity simultaneously with recording
technology are used.

It has been confirmed that the performance of individual BCI provides a lower
classification accuracy than HBCIs. In a related context, one of the main reasons why HBCIs
are not widely used is the enormity of their hardware and complexity. To decode this
complexity, it is necessary to implement lightweight and compact HBCIs with care to reduce
performance degradation. On this track, experimental studies have shown that the use of HBCls
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with only 2 channels of EEG method and 2 pairs (sources-detectors) of fNIRS can achieve high
classification accuracy, while the system is characterized by ease of use [2].

Hybrid fNIRS and EEG

The main essence of the hybrid system configuration of any system, whether it is a plant,
animal, technical, or software system, is that one of the systems must complement the
shortcomings of the other, noting that the hybrid system configuration must be conditioned to
achieve outputs that are not equal to those received from the autonomous system, but the results
must be clearly superior when using the hybrid system. On the other hand, when proceeding to
the formation of a hybrid system, it should be if there are at least partially similar characteristics
in both systems, which allows us to simply form a hybrid system.

The possibility of configuring a hybrid system of fNIRS and EEG is consistent with the
above, because the outcomes that obtained from these techniques are better than those obtained
when used independently, and some characteristics of these two techniques are similar. In the
composition of EEG, sensors-electrodes are placed on the skin of the upper part of the skull
(international system "10-20") and capture electrical signals from neurons in the brain. This can
be measured in the electrical activity of the brain, can monitor complex neuronal activity and
its changes [1].

EEG has many advantages and disadvantages that may be compatible with fNIRS. For
example, they are compatible with non-surgical intervention, EEG technology may be affected
by its very high sensitivity to artifacts; therefore, fNIRS may become an alternative to this
feature, or there may be a challenge facing the hybrid system involving these two technologies.
In addition, the EEG signals provide high temporal resolution, allowing real-time measurement
of motor imagery [4], which can be converted into control signals to assist with motor
movements. Unlike fNIRS, which suffers from a time delay of 3-5 seconds in detecting areas
of brain activity. It has also been widely reported that better BCI performance can be achieved
with multimodal analysis instead of standalone EEG signals. Therefore, multimodal studies that
assess both the electrical activity of the brain as well as the activity of the circulatory system
attracted great attention of researchers [25, 26]. Moreover, recent scientific studies based on the
analysis of activated brain regions using fNIRS proved that the auxiliary motor cortex was
obviously activated during motor imagery, which means that hybrid signaling with a
hybridization strategy can enhance stability and error ignoring in BCI systems, which qualifies
it to be a valuable technique for practical applications, as shown in Table 1 [27].

Table 1 — Comparison of single-use or hybrid scientific research of fNIRS technology from 2020 to
2023

Tabnuia 1 — CpaBHEHHE OHOPA30BBIX WIIH THOPHMIHBIX HAYYHBIX HccienoBanuii Texaomoruu NIRS
¢ 2020 mo 2023 rr.

System/alone Accuracy or
Ref. | Year or Method mean
hybrid accuracy, %

Double constrained nonnegative
[28] | 2020 EEG matrix factorization (DCNMF) 79,00

End-to-end shallow architecture
[29] | 2021 EEG 83,20
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Table 1 (extended)
Tabmuia 1 (mpogomkeHue)

System/alone Method Accuracy or
Ref. | Year or mean
accuracy, %
hybrid
Manifold embedded transfer
[30] | 2022 EEG learning (METL) 83,14
Stepwise regression analysis based on 78,27 HbR
[31] | 2020 fNIRS sequential feature selection 77,41 HbO
(SWR-SFS) and ReliefF methods
Signal Mean (SM), Skewness (SK),
[32] | 2020 fNIRS Kurtosis (KR), Standard 90,54
Deviation(SD), Signal Peak (SP), and
Signal
Variance (SV)+KNN
CSP+LSVM
[33] | 2020 fNIRS 71,4
NN_LSTM, NN_ConvLST,
[34] | 2021 fNIRS NN_ResNet 91
Pearson correlation coefficient-
[35] | 2020 | EEG+fNIRS based feature selection (PCCFS) 79,31
Vector-phase analysis (VPA)
[36] | 2022 | EEG+fNIRS 82, 89, 87, 86
fNIRS-guided attention network
[37] | 2022 | EEG+fNIRS (FGANEet) 78,59 + 8,86
FBCSP+PCA+SVM,
[27] | 2023 | EEG+fNIRS GLM+MBLL 92,25 +£4,99

These results demonstrate that hybrid signals with a combined strategy can enhance the
stability and fault tolerance in BCI systems, which makes them valuable for scientific and
practical applications. Despite the availability of multiple recording methods, the combination
of EEG-fNIRS carries a clear signal as a promising approach and this is related to low cost,
flexibility in portability, low interference, and good spatial and temporal resolution [21, 38]. In
brief, the conclusion is that EEG and fNIRS, the recording of each of which provides additional
information about the bioelectric activity of the brain. In addition, the combination of these
two technologies has certain unique characteristics, as the rationale behind their combination is
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their dependence on a physiological phenomenon called neurovascular coupling [39] within the
brain, which makes them more useful in certain applications. The combination of these two
technologies may be the most promising system for controlling prostheses [40, 41].Nevertheless,
fNIRS technology can be considered as the only possible alternative to EEG or form with it a
hybrid system for creating systems for recording brain activity in a mobile portable BCI in the
near future.

Hybrid fNIRS and EMG

Electromyography (EMG) is a diagnostic method that enables the recording of the
electrical activity of bioelectric signals resulting from the activities of the skeletal muscles.
Surface electromyography (SEMG) measures the electrical signal on the skin’s surface, which
is generated by skeletal muscles (Figure 4). It is often performed while stimulating the relevant
motor and peripheral nerves. The measurement may be performed either in an invasive or
surface (noninvasive) at the level of a single muscle fiber, single motor unit, or the entire
muscle [42].

o Sensing electrodes
EMG : y

Stimulator

Figure 4 — Example of surface EMG signal measurement
Pucynok 4 — Ilpumep n3mepenus nosepxHoctHoro OMI -curnana

The processing of information from the EMG enables diagnostics of muscle and
neuromuscular disorders, or to analyze or use the SEMG for rehabilitation or robot control [43,
44]. The EMG frequency ranges vary from 0,01 to 10 kHz, depending on the type of
examination (EMG or SEMG). The most useful and important frequency ranges are within the
range of 50-150 Hz [42]. While the fNIRS frequency is approximately equal to 1 Hz at 830
nm, which is the optimal wavelength [1, 45]. The SEMG and fNIRS methods can be used
separately or together. In scientific studies related to sports activity and neurophysiology, the
focus has been on various sports disciplines as subjects of research [46] or the use of fNIRS as
a hybrid system use it as a hybrid system with fNIRS to enhance the accuracy of classification
of transuterine prostheses [47]. Several scientific studies have focused on the implementation
of fNIRS and EMG technologies in motion but were not related to the interrelationship of
signals during specific sports in dynamic movements. Moreover, most of them do not include
a description of the signal analysis methods. Kimoto et al. found it possible to perform
simultaneous EMG, mechanomyography (MMG) and near-infrared spectroscopy (NIRS)
measurements at a local position using a wireless multi-layered sensor, which could be used to
predict muscular fatigue [48]. Di Giminiani [49] when comparing regional muscle
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oxyhemoglobin saturation and surface EMG data measured under resting and dynamic
conditions (treadmill run and strength exercises). They implemented a recently developed
integrated quadriceps muscle oximetry/EMG system. When recording oxygen consumption and
muscle activity of the gastrocnemius muscle of the left leg for participants. Daniel N. et al.
found positive correlations between EMG and fNIRS signals, where the signal correlations
between the participants with the most active and least active life style [6]. In a related context,
the shapes of the changes in the EMG and fNIRS signals during exercise suggest a mutual
relationship during dynamic movements. The close and significant positive correlations
between cerebral oxygenation changes (fNIRS) and EMG signals during motor tasks provide
evidence for creation hybrid system used to further explore the mapping relationship between
brain activity and motor task execution and can be directed toward clinical studies.

Hybrid system from the signal acquisition stage to the application

To obtain the signal, the activation triggers of the motor cortex vary depending on the
nature of the action. It was found that all etiologies of the motor cortex under different names
cause a change in the concentration of hemoglobin, depending on which stimulus caused the
activation of the cerebral cortex. When the event concerns rehabilitation and prosthetics, the
triggers for the activation of the motor cortex should be movement stimuli. Triggers for
activation of the motor cortex of the brain sound triggers may cause a change in hemoglobin
concentration slower than the event-related potential; however, they capture the neural activity
underlying the speech production processes , and this indicates the success of using fNIRS to
study speech production [50-53] means that sound triggers activate the motor cortex of the
brain [54]. In a related context that the state of signal gain at the work of medical imaging
techniques based on BCI independently and the accompanying different stages from the signal
acquisition stage, signal preprocessing, feature extraction, feature fusion, to the classification
stage and then the application in the real world, the work of the hybrid system goes through
the same stages as in Figure 5.

Signal Signal preprocessing Feature Extraction Classification
acquisition

Converts classified signals to control commands

Application

Sensory-mental, motor-
visual

Devices, Machines, Etc.
(The real world)

Feedback (visual. audio. others )

Signal source

Figure 5 — fNIRS signal circuit as an individual system or as a hybrid system, comprises five steps of
the BCI system
Pucynok 5 — CurnansHas cxema fNIRS kak otaensHast ciucrema nim Kak THOpHIHAS CHCTEMA
BKJIFOYAET B ce0st 1mATh dTanos cucteMsl BCI
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The feature extraction process is not without challenges because it is dependent in high
percentage on prior complex knowledge in time, and this leads to the risk of information loss
[55]. There are different and popular ways of feature extraction. Brain signals can be filtered
into three bands as EEG or filtered into one band as fNIRS to improve the signal quality for
subsequent analysis [27]. Decreased number of extracted features and reduced computational
complexity can be achieved by combining nonlinear feature extraction with stacking ensemble
learning technique and genetic optimization for EEG-fNIRS based HBCI systems. The
language of hybridization is not limited only to medical technologies such as fNIRS with other
techniques, it can extend to any stage,from obtaining a biological signal to practical application.
The combination consisting of wavelet packet decomposition with canonical correlation
analysis for motion artifact correction from single-channel EEG and fNIRS signals is better
than using wavelet packet decomposition independently [25]. In order to demonstrate the
performance advantage of single-method and mixed methods by using the conventionalwhale
optimization algorithm and binary enhanced whale optimization algorithm demonstrated a high
classification accuracy (90.37 £+ 7.66 % and 94.22 + 5.39 %, respectively). The classification
performance exhibited a 3,85 % increase compared with the conventional whale optimization
algorithm [56, 57].

If technological progress is employed by the development of modern algorithms that
will reduce by a high percentage the motion artifacts of the EEG and fNIRS data, and this is
obviously extremely important for the interpretation of signals and the correct diagnosis and
treatment by a medical doctor for all applications based on BCI. fNIRS improves spatial
resolution, cortical sensitivity, and quantification by anatomical recording, and this requires the
development of algorithms. After the brain signal is acquired by hybrid methods, it must be
processed using one of the analysis processors. Perhaps the most used is principle component
analysis or general linear model, which uses to analyze human neuroimaging data from both
fMRI and fNIRS for the purpose of a non-verbal working memory task [7, 27, 40, 58]. After
extracting features from fNIRS data, the classifier (as support vector machine) is necessary for
the assignment of features, the identification of categories of motor activity (patterns), and then
for the stage of practical application. This is the goal and success of each scientific experiment
to crown it with practical application to reality. The continuous development of fNIRS along
with machine learning algorithmscan significantly expand the implementation of fNIRS as a
hybrid system for monitoring at the clinical level and facilitate the general interpretation of
brain signals [59]. The information carried by the acquired EEG signals is shown in Figure 6
(A), while the biomarkers in the acquired fNIRS signal included the hemodynamic parameters
which are (HBO), (HbR), and total-(HbT) hemoglobin, and the tissue oxygen saturation (SO2)
shown in Figure 6 (B). The acquired signal of SEMG is the trainof the motor-unit action
potentials generated by the muscle fibers of the motor unit in response to nervous stimulation
and can be analyzed in both time and frequencydomains. Some common applications are shown
in Figure 6 (C).
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Figure 6 — Schematic representation of (a) EEG signal processing, (b) fNIRS and NIRS signal
processing, and (c) EMG signal processing workflow and workflow and biomarkers [60]
Pucynok 6 — Cxemaruueckoe npejcrasicHue (a) oopadorku curaanos D3I, (0) o0paboTku
curraioB TNIRS u NIRS u (B) 06paboTku curranos DMI', a Taxke pabodero mpoiecca u

omomapkepos [60]

Current and expected applications of hybrid systems

Technological systems such as EEG, SMEG and fNIRS contribute to their numerous
uses independently in many areas such as movements, neurorehabilitation, neuroprosthetics
etc, and this exists and is realistically tangible. Hybrid systems formed from a combination of
these technologies that are superior that are superior on the individual system, as confirmed by
scientific studies, will have the same applications as individual systems, but should be better,

and this isthe logic of hybrid system configuration.

A hybrid EEG-NIRS system combined with body motion capture allowed us to
distinguish Parkinson’s disease with more than 83 % accuracy for each individual [61], and
more recently to monitor non-responding patients with acute brain injury, obtaining 99 %
accuracy in distinguishing patients that subsequently failed to recover recover consciousness
[62]. The combination of EEG and fNIRS moreover, provides a useful approach for evaluating
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guided robot-assisted rehabilitation. For example, Wang et al. found that BCI-based
neurofeedback training in chronic stroke increased their EEG event-related
synchronization/desynchronization during motor imagery and enhanced cortical activity
measured with fNIRS [60, 63].

The expected and recommended applications of EEG-fNIRS are the assessment of the
development of mental fatigue during flight simulation [64], and EEG technology is still the
leader in this field. The SEMG and fNIRS methods are used together to allow continuous
monitoring of a muscle during motor activity or rehabilitative exercises [6]. The feasibility of
fusing SEMG and fNIRS signals has been demonstrated to improve motion classification
accuracy for elbow amputees [47], enhancing the control performances of multifunctional
myoelectric prostheses in clinical application [65].

In brief, hybrid systems can play their role in many fields, including:

a) control of robotic devices, including exoskeletons, to increase human capabilities;

b) because of its ability to transmit information, it can provide social interactions by
allowing social applications to accurately assess and transmit a person’s emotions, and this leads
to improvement of self-control and psychophysiological state quality;

c) analysis and training of human resistance to specific stress effects;

d) revealing and preventing brain pathologies;

e) assessing and controlling psychophysiological states;

f) rehabilitation of people after brain damage, for example, restoration of motor skills
after a stroke.

Conclusion

Comparing hybrid systems (fNIRS plus another technical tool) with the analysis of
modern systematic scientific studies, can say that the hybrid system achieves an advantage
better than individual use, such as fNIRS with EEG, where the results of classification
accuracy showed their superiority over individual uses of both technologies. This is
confirmation that the hybridization of these two technologies may be a promising hybrid
system of prosthesis control. fNIRS has the ability to measure hemodynamics and enable
cortical tissues where there is no danger and no restrictions in movement mobility, in addition
to its advantages that offset the disadvantages of other medical imaging technologies, can be
a hybrid mode that is superior in performance to that technology when used independently.
The improvement of the accuracy of signal classification from low to high is a good indicator
and another confirmation that hybrid technologies are the most promising candidate
technology for scientific and practical applications. The presence of positive correlations
between cerebral oxygen changes and EMG signals during motor tasks supports the idea of
creating a hybrid system between EMG and fNIRS.

Despite this, there are hundreds of studies on our topic and successes found in some
hybrid systems and failures in others. The focus should be on future studies involving the
study of hybrid systems that have met with success to ensure their implementation in the real
world (for each subject prepared for the study according to a system (hybrid based on BCI or
HBCIs). As well as focusing on those that did not achieve success. This should not create
obstacles for future investigations using fNIRS alone. For the upcoming future research and
after proving that hybrid systems are superior on the individual system, questions and
challenges come in which hybrid systems such as fNIRS+EEG or fNIRS+EMG will be the most
promising and proven technology to be used for treating a disease and disabilities, or the
individual system that is still in the research circle will be the leader in diagnosis and treatment
if modern applied sciences can add their fingerprints to solve the challenges and disadvantages
facing each system.
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