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Abstract. Sensor devices and biomedical imaging technologies used in clinical application scenarios are 

essential for providing a comprehensive portrait of patients’ state, but these technologies, despite their 

outstanding advantages, have their inherent disadvantages. Beginning with the principle of 

complementary images of medical imaging techniques, this review examines the functional near- 

infrared spectroscopy (fNIRS) technique and its use as a hybrid system. The fNIRS technology delivers 

impressive results in terms of the biological signal classification accuracy, but its use as a hybrid system 

with electroencephalography (EEG) and electromyography (EMG) achieved better results because it has 

become a complementary tool to fill the deficit of the common technology with it, and this has been 

highlighted in this review. The results show that the superiority in the biological signal classification 

accuracy provided by hybrid systems from fNIRS with EEG and EMG would provide a comprehensive 

and objective assessment of the patients’ state from the stage of illness to healing. In conclusion, we 

have no indication from the scientific studies of the previous four years (2020–2023) that demonstrate 

which of the hybrid systems is better than others when used in clinical practice, and this encourages 

further in-depth studies to validate the combination of methods to prove their success and preference. 
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Резюме. Сенсорные устройства и технологии биомедицинской визуализации, используемые в 

сценариях клинического применения, необходимы для получения полной картины состояния 

пациентов, но эти технологии, несмотря на их выдающиеся преимущества, не лишены 

недостатков. Исходя из принципа взаимодополняемости методов медицинской визуализации, в 

этом обзоре освещается функциональная технология ближней инфракрасной спектроскопии 

(fNIRS) и ее использование в качестве гибридной системы. fNIRS технология достигла 

впечатляющих результатов с точки зрения точности классификации биологических сигналов, но 

ее использование в качестве гибридной системы с электроэнцефалографией (ЭЭГ) и 

электромиографией (ЭМГ) позволило достичь более высоких результатов, поскольку она стала 

дополнительным инструментом для восполнения дефицита другой технологии, и это 

подчеркивалось в рамках настоящего обзора. Полученные в ходе исследования результаты 

показали, что превосходство в классификации точности биологических сигналов, 

обеспечиваемых гибридными системами от fNIRS с ЭЭГ, ЭМГ, обеспечило бы всестороннюю и 

объективную оценку состояния пациентов от стадии заболевания до выздоровления. В научных 

исследованиях предыдущих четырех лет (2020–2023 гг.) нет указаний на то, какая из гибридных 

систем лучше других при использовании в клинической практике, и это побуждает к дальнейшим 

https://doi.org/10.26102/2310-6018/2024.44.1.005
mailto:aliofphysics777ali@gmail.com
https://moitvivt.ru/ru/journal/pdf?id=1459
mailto:aliofphysics777ali@gmail.com


Моделирование, оптимизация и информационные технологии /  

Modeling, optimization and information technology  

2024;12(1) 

https://moitvivt.ru 

 

 2 | 18 

углубленным исследованиям для проверки комбинации методов, чтобы доказать их успешность 

и предпочтение. 
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Introduction 

Scientific history has demonstrated that no technical tool has continuous endurance; its 

work may end or be followed by sophisticated sequences to keep up with scientific modernity. 

Recently, medical imaging technologies have begun to appear in various fields, especially in 

medicine. The variety of medical imaging techniques aims at the accurate study of all organs 

and components of the body with the view to diagnosing the affected organ or component and 

treating, activating, or rehabilitating it as required by the need of that organ and with greater 

benefit: the focus of neuroimaging techniques is the study of brain activity. Note that these 

medical imaging techniques are not limited to a single scientific concept. In addition, they fall 

within a multidisciplinary concept. For example, neural interfaces and their development are 

closely related to the concept of linear physics [1], and the concept of medical imaging 

technologies is related to biological concepts, engineering, and artificial intelligence. 

At the intersection of sciences, medical imaging techniques, especially functional near-

infrared spectroscopy technique (fNIRS), are the obvious example that intersects these sciences 

according to the concept of BCI (brain computer interfaces). Using neuroimaging methods such 

as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic 

resonance imaging (fMRI), and fNIRS based on BCI, which depends functionally on the real-

time detection of characteristic wavelength or patterns of brain activity and dynamically on the 

transformation of the information obtained into control commands for external devices that 

have become commonly used, such as wheelchairs, prostheses, and others. Increasing the 

accuracy of the classification of BCI brain signal patterns is an ongoing challenge to create a 

perfect BCI.  

This classification includes a high and acceptable accuracy when it is a standard for non-

invasive BCI classifiers used for communication tasks, neurological rehabilitation or operator 

assessment, but it is clearly insufficient and requires more accuracy due to the sensitivity of 

their use to control external devices such as an artificial hand. Therefore, an important task is 

to improve the accuracy of processing brain signals in real time and, as a result, increase the 

accuracy in recognizing mental commands. This may be attributed to the creation of multimedia 

hybrid BCIs, or hybrid brain-computer interface systems (hereafter referred to as HBCIs) that 

use several types of signals. The unique distinguishing characteristics of HBCIs is to take 

advantage of different technologies, and this is what makes them widely used with hybrid 

technologies as well and can be called this system (hybrid based on hybrid). 

Recent scientific research has proven that the HBCIs application does not depend on 

two hybrid technologies only in terms of operation, but also extends to different hybrid 

technologies such as EEG-fNIRS [2] and EEG-EMG [3] and does not depend in terms of 

application on a specific software, but also extends to the comprehensiveness of its application 

in wide and different fields as controlling the movement of robots, detecting and preventing 

brain diseases, monitoring and controlling normal and pathological cognitive activity and 

others. EEG is non-invasive based on electrical activity of the nervous system still very low for 

the exchange of information between the brain and the machine. EEG technology has proven 

its presence in many fields, but in the field of its use in controlling artificial limbs it has not 

https://moitvivt.ru/ru/journal/pdf?id=1459
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found application because of its disadvantages in this field. Like the context of this fNIRS which 

is a non-invasive neuroimaging technique based on chemical processes activity, due to its 

advantages that compensate for the disadvantages of EEG, they may form a hybrid system for 

artificial control. Among the various possible HBCIs, the hybrid EEG-fNIRS based is the most 

studied because of the complementary characteristics of EEG and fNIRS. In terms of 

classification accuracy and information transfer rate HBCIs could achieve a better overall 

performance compared with unimodal BCIs [2]. MEG is a noninvasive method of brain imaging 

and provides signals with higher spatiotemporal resolution, which is not present in fNIRS. It 

covers the entire cerebral cortex (MEG) (Figure 1, a) enables recording events for up to 

milliseconds as well as determining the sources of the magnetic field in the cerebral cortex with 

high accuracy [4]. fNIRS is located above the frontal lobe area of the brain with a noticeable 

delay period for recording events (Figure 1, b). By integrating MEG and fNIRS and based on 

the additional benefits they provide, higher spatial and temporal resolution can be provided than 

any other method [5]. This is because the hybrid system between the fNIRS and the MEG is 

better to use than to use it independently. 

 

Figure 1 – It is shown how (a) the entire cerebral cortex (MEG) and (b) the frontal lobe area (fNIRS) 

are covered 

Рисунок 1– Показано, как покрывается (а) вся кора головного мозга (МЭГ) и (б) область 

лобных долей (fNIRS) 

In the scientific literature focusing on surface electromyography (sEMG) which records 

the electrical activity represented by muscle dynamics for action potentials that initiate muscle 

contraction and force production and fNIRS, researchers have explored a variety of topics 

related to physiological measurement techniques, where there were positive correlations 

between EMG signals and fNIRS in all participants (Figure 2) [6]. 
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Figure 2 – EMG and fNIRS sensors are installed on the patient’s body to measure        such parameters as 

oxygen consumption and muscle activation 

Рисунок 2 – ЭМГ и fNIRS датчики устанавливаются на тело пациента для измерения таких 

параметров, как потребление кислорода и мышечная активность 

fNIRS and fMRI are based on the principle (blood-oxygenation-level-dependent) which 

(hereafter referred to as BOLD). Despite the fact that fNIRS and fMRI measure essentially the 

same activity, in different approaches, fMRI uses the different magnetic properties of HbO and 

HbR , while fNIRS uses the different optical properties of HBO and HbR (which absorb near-

infrared light at different frequencies [7, 8]. Activating motor imagery should lead to increased 

coordination of oxygenation of the blood, thus creating doubt in the reliability of fNIRS for 

BCI applications [9]. 

fNIRS provides a cost-effective and portable alternative to fMRI to assess cortical 

activity changes based on circulatory signals. The spatial and temporal bases of the fMRI signal 

and the concentration of fNIRS corresponding to the chromophore measurements are still not 

completely clear. Fingerprinting of the brain indicates proven success with fMRI, whereas the 

results of experimental studies using fNIRS show depending on the number of runs and brain 

regions used for classification with an average classification accuracy ranging from 75 % to 

98 %. Under the right conditions, brain fingerprinting with fNIRS is close to 99,9 % accuracy 

found with fMRI [10]. While in assessment of the spatial correspondence between fNIRS and 

fMRI hemodynamic responses in motor tasks, no statistically significant differences were 

observed in the multimodal spatial correspondence between HbO, HbR, and HbT for motor 

tasks. A hybrid approach to modeling fMRI data using their corresponding fMRI measurements 

(HBO, HPR, and HbT) from acquired asynchronously, would help to identify the corresponding 

active groups of motor-related areas [7]. That is, fNIRS models will continue to benefit from 

systematic verification by fMRI, especially if they target a specific cortical area [11]. The 

approach of fNIRS due to its being portable, wearable and high intensity combined and diffuse 

optical tomography can be an important approach that can open new areas of neurology by 

enabling functional neuroimaging of the human cortex with a resolution comparable to fMRI 

in almost any environment and population [12]. fMRI is the gold standard for modern functional 

neuroimaging, and despite its essential use in cognitive neuroscience and clinical research, its 

disadvantages support the idea of using it as a technical combination with fNIRS. 
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Numerous studies have shown that there is a growing trend and the possibility of their 

use to complement each other when the use of fMRI appears likely because there is a risk of 

using it independently [7]. In view of the shortcomings inherent in the above-mentioned 

technologies, this review aims to point out fNIRS as a reliable technology for the formation of 

a hybrid system for recording, analyzing and monitoring brain activity to perform various tasks 

such as controlling the movement of prostheses, detecting brain diseases and monitoring 

psychophysiological states, monitoringnormal and pathological cognitive activity and etc.  

Materials and Methods 

The purpose of this review is to explore the feasibility of fNIRS and its use as a hybrid 

system with other medical technologies, particularly EEG and EMG. In addition, the 

relationship between fNIRS with other technologies, such as MEG, fMRI, and diffuse optical 

tomography technologies that related to the subject of the review, whether it is used as a stand-

alone system or as a hybrid system. This has been done by analyzing scientific articles, master’s 

theses, and recent doctoral dissertations limited to the four years from 2020 to 2023. 

We took upon ourselves the diversity of searching for sources that are strongly related 

to our topic in reliable databases we searched in databases, namely, domain, Google Scholar, 

and various other sites such as  the first site https://scholar.google.com/ and others. In addition, 

various links are indicated as https://www.mdpi.com/journal/sensors, https://www.refseek.com 

and others, which are listed as reliable references at the end of the literature review. The search 

direction centered on the keywords: HBCIs, fNIRS, fMRI, EEG and EMG. Finally, the relevant 

articles were reviewed. The recommendations of experienced people and their comments were 

considered by deleting and adding systematic reviews and targeted analysis. 

HBCIs 

Understanding brain functions is essential for efficient BCI applications, and its 

development is closely related to physics. The classification of brain states can be performed in 

real time in accordance with the registered brain activity caused either by spontaneous 

physiological processes or by external stimulation using an intelligent BCI system. BCIs are 

usually divided into categories of unidirectional (receiving signals from the brain or sending 

them to it) and bidirectional (allowing information to be exchanged in both directions), and this 

depends on the direction of their work [13]. The classification of BCIs in general is given below 

[1, 14]. 

Control command-based classification 

According to the type of control command given by the BCI operator, neural interfaces 

can be classified as follows:  

1. Active BCI uses changes in brain activity, directly and consciously controlled by the 

operator of the neurointerface, regardless of external events, to receive control commands. 

2. Reactive BCI detects and classifies the brain’s response (for example, evoked 

potential) to external triggers (visual, auditory, tactile, etc.) for control commands. 

3. Passive BCI analyzes the user’s current brain activity without any targeted 

monitoring to obtain information about the actual state of the brain, for example, attention, 

switching activity, emotional state, etc. As a task for raising hands to study possible cerebral 

hemodynamics, the trigger is passive action [15]. 

Input data processing modality-based classification 

The classification here is based on synchronization of the input data processing 

modality, BCI can be classified as follows:   

1. Synchronous BCI specializes in analyzing brain signals only during predefined time 

intervals, whereas any brain signals are outside the pre-set time periods, they will be ignored. 

https://www.mdpi.com/journal/sensors
https://www.refseek.com/
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Thus, the operator can create commands only during certain periods of time determined 

by synchronous. In fact, synchronous systems are reactive although they can also be passive. 

2. Asynchronous BCI on the contrary, here the monitoring is continuously the signals 

of the brain, regardless of the time the operator acts. Therefore, asynchronous BCI provides a 

more natural human-machine interaction than synchronous BCI. However, asynchronous BCIs 

are more complex and require large computational costs. Active and passive BCIs are usually 

asynchronous [16]. 

Invasive and noninvasive BCI and Brain-machine interfaces 

The classification based on the type of electrophysiological recordings depending on 

their invasivity can be classified as:  

1. Noninvasive BCI limited to recording brain activity of the surface area of the head. 

This approach has proven useful in helping patients develop and provide limited bandwidth 

communication channels with the outside world. 

2. Invasive BCI records brain activity intracranially using implanted electrodes. 

And the above, the HBCIs are not limited to single data processing, but are based on 

hybrid double and triple data processing, and this is what makes the HBCIs [9, 16, 17, 18]. The 

main challenges of HBCIs is the control of prostheses or external devices in general by the 

electrical activity of the brain as EEG [19] or by the chemical activity as fNIRS [20], whether 

used individually or in a hybrid way [21]. A large percentage of the BCI system uses only one 

type of physiological signal, while the HBCIs, which take the advantages of different 

techniques, take two phases of the HBCIs, which combine active and passive neuron interfaces, 

as shown in Figure 3 [1]. 

 

Figure 3 – Hybrid active-passive BCIs 

Рисунок 3 – Гибридные активные–пассивные BCI 

HBCIs of active and passive are more effective, enable estimation of the operator’s 

mental state, and take advantages of different techniques such as fNIRS and EEG [17, 22, 23] 

and takes advantages of hybrid technologies EEG-EMG [24]. In the context of a hybridization 

system, a HBCIs can be in three types according to various signals of brain activity: 

1. HBCIs when various reflected signals of brain activity are used. 

2. HBCIs when signals of brain activity in conjunction with external signals of different 

nature are used. 

3. HBCIs when various physiological brain activity simultaneously with recording 

technology are used. 

It has been confirmed that the performance of individual BCI provides a lower 

classification accuracy than HBCIs. In a related context, one of the main reasons why HBCIs 

are not widely used is the enormity of their hardware and complexity. To decode this 

complexity, it is necessary to implement lightweight and compact HBCIs with care to reduce 

performance degradation. On this track, experimental studies have shown that the use of HBCIs 
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with only 2 channels of EEG method and 2 pairs (sources-detectors) of fNIRS can achieve high 

classification accuracy, while the system is characterized by ease of use [2]. 

Hybrid fNIRS and EEG 

The main essence of the hybrid system configuration of any system, whether it is a plant, 

animal, technical, or software system, is that one of the systems must complement the 

shortcomings of the other, noting that the hybrid system configuration must be conditioned to 

achieve outputs that are not equal to those received from the autonomous system, but the results 

must be clearly superior when using the hybrid system. On the other hand, when proceeding to 

the formation of a hybrid system, it should be if there are at least partially similar characteristics 

in both systems, which allows us to simply form a hybrid system. 

The possibility of configuring a hybrid system of fNIRS and EEG is consistent with the 

above, because the outcomes that obtained from these techniques are better than those obtained 

when used independently, and some characteristics of these two techniques are similar. In the 

composition of EEG, sensors-electrodes are placed on the skin of the upper part of the skull 

(international system "10-20") and capture electrical signals from neurons in the brain. This can 

be measured in the electrical activity of the brain, can monitor complex neuronal activity and 

its changes [1]. 

EEG has many advantages and disadvantages that may be compatible with fNIRS. For 

example, they are compatible with non-surgical intervention, EEG technology may be affected 

by its very high sensitivity to artifacts; therefore, fNIRS may become an alternative to this 

feature, or there may be a challenge facing the hybrid system involving these two technologies. 

In addition, the EEG signals provide high temporal resolution, allowing real-time measurement 

of motor imagery [4], which can be converted into control signals to assist with motor 

movements. Unlike fNIRS, which suffers from a time delay of 3–5 seconds in detecting areas 

of brain activity. It has also been widely reported that better BCI performance can be achieved 

with multimodal analysis instead of standalone EEG signals. Therefore, multimodal studies that 

assess both the electrical activity of the brain as well as the activity of the circulatory system 

attracted great attention of researchers [25, 26]. Moreover, recent scientific studies based on the 

analysis of activated brain regions using fNIRS proved that the auxiliary motor cortex was 

obviously activated during motor imagery, which means that hybrid signaling with a 

hybridization strategy can enhance stability and error ignoring in BCI systems, which qualifies 

it to be a valuable technique for practical applications, as shown in Table 1 [27]. 

Table 1 – Comparison of single-use or hybrid scientific research of fNIRS technology from 2020 to 

2023 

Таблица 1 – Сравнение одноразовых или гибридных научных исследований технологии fNIRS 

с 2020 по 2023 гг. 

Ref. Year 
System/alone 

or 

hybrid 

Method 
Accuracy or 

mean 

accuracy, % 

[28] 2020 EEG 
Double constrained nonnegative 

matrix factorization (DCNMF) 79,00 

[29] 2021 EEG 
End-to-end shallow architecture 

83,20 
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Table 1 (extended) 

Таблица 1 (продолжение) 

Ref. Year 
System/alone 

or 

hybrid 

Method Accuracy or 

mean 

accuracy, % 

[30] 2022 EEG 
Manifold embedded transfer 

learning (METL) 83,14 

[31] 2020 fNIRS 
Stepwise regression analysis based on 

sequential feature selection 

(SWR-SFS) and ReliefF methods 

78,27 HbR 

77,41 HbO 

[32] 2020 fNIRS 
Signal Mean (SM), Skewness (SK), 

Kurtosis (KR), Standard 

Deviation(SD), Signal Peak (SP), and 

Signal 

Variance (SV)+KNN 

90,54 

[33] 2020 fNIRS 
CSP+LSVM 

71,4 

[34] 2021 fNIRS 
NN_LSTM, NN_ConvLST, 

NN_ResNet 91 

[35] 2020 EEG+fNIRS 

 

Pearson correlation coefficient- 

based feature selection (PCCFS) 79,31 

[36] 2022 EEG+fNIRS 

 

Vector-phase analysis (VPA) 
82, 89, 87, 86 

[37] 2022 EEG+fNIRS 
fNIRS-guided attention network 

(FGANet) 78,59 ± 8,86 

[27] 2023 EEG+fNIRS 
FBCSP+PCA+SVM, 

GLM+MBLL 92,25 ± 4,99 

These results demonstrate that hybrid signals with a combined strategy can enhance the 

stability and fault tolerance in BCI systems, which makes them valuable for scientific and 

practical applications. Despite the availability of multiple recording methods, the combination 

of EEG-fNIRS carries a clear signal as a promising approach and this is related to low cost, 

flexibility in portability, low interference, and good spatial and temporal resolution [21, 38]. In 

brief, the conclusion is that EEG and fNIRS, the recording of each of which provides additional 

information about the bioelectric activity of the brain. In addition, the combination of these 

two technologies has certain unique characteristics, as the rationale behind their combination is 
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their dependence on a physiological phenomenon called neurovascular coupling [39] within the 

brain, which makes them more useful in certain applications. The combination of these two 

technologies may be the most promising system for controlling prostheses [40, 41].                        Nevertheless, 

fNIRS technology can be considered as the only possible alternative to EEG or form with it a 

hybrid system for creating systems for recording brain activity in a mobile portable BCI in the 

near future. 

Hybrid fNIRS and EMG 

Electromyography (EMG) is a diagnostic method that enables the recording of the 

electrical activity of bioelectric signals resulting from the activities of the skeletal muscles. 

Surface electromyography (sEMG) measures the electrical signal on the skin’s surface, which 

is generated by skeletal muscles (Figure 4). It is often performed while stimulating the relevant 

motor and peripheral nerves. The measurement may be performed either in an invasive or 

surface (noninvasive) at the level of a single muscle fiber, single motor unit, or the entire 

muscle [42]. 

 

 

Figure 4 – Example of surface EMG signal measurement 

Рисунок 4 – Пример измерения поверхностного ЭМГ-сигнала 

The processing of information from the EMG enables diagnostics of muscle and 

neuromuscular disorders, or to analyze or use the sEMG for rehabilitation or robot control [43, 

44]. The EMG frequency ranges vary from 0,01 to 10 kHz, depending on the type of 

examination (EMG or sEMG). The most useful and important frequency ranges are within the 

range of 50–150 Hz [42]. While the fNIRS frequency is approximately equal to 1 Hz at 830 

nm, which is the optimal wavelength [1, 45]. The sEMG and fNIRS methods can be used 

separately or together. In scientific studies related to sports activity and neurophysiology, the 

focus has been on various sports disciplines as subjects of research [46] or the use of fNIRS as 

a hybrid system use it as a hybrid system with fNIRS to enhance the accuracy of classification 

of transuterine prostheses [47]. Several scientific studies have focused on the implementation 

of fNIRS and EMG technologies in motion but were not related to the interrelationship of 

signals during specific sports in dynamic movements. Moreover, most of them do not include 

a description of the signal analysis methods. Kimoto et al. found it possible to perform 

simultaneous EMG, mechanomyography (MMG) and near-infrared spectroscopy (NIRS) 

measurements at a local position using a wireless multi-layered sensor, which could be used to 

predict muscular fatigue [48]. Di Giminiani [49] when comparing regional muscle 
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oxyhemoglobin saturation and surface EMG data measured under resting and dynamic 

conditions (treadmill run and strength exercises). They implemented a recently developed 

integrated quadriceps muscle oximetry/EMG system. When recording oxygen consumption and 

muscle activity of the gastrocnemius muscle of the left leg for participants. Daniel N. et al. 

found positive correlations between EMG and fNIRS signals, where the signal correlations 

between the participants with the most active and least active  life style [6]. In a related context, 

the shapes of the changes in the EMG and fNIRS signals during exercise suggest a mutual 

relationship during dynamic movements. The close and significant positive correlations 

between cerebral oxygenation changes (fNIRS) and EMG signals during motor tasks provide 

evidence for creation hybrid system used to further explore the mapping relationship between 

brain activity and motor task execution and can be directed toward clinical studies. 

Hybrid system from the signal acquisition stage to the application 

To obtain the signal, the activation triggers of the motor cortex vary depending on the 

nature of the action. It was found that all etiologies of the motor cortex under different names 

cause a change in the concentration of hemoglobin, depending on which stimulus caused the 

activation of the cerebral cortex. When the event  concerns rehabilitation and prosthetics, the 

triggers for the activation of the motor cortex should be movement stimuli. Triggers for 

activation of the motor cortex of the brain sound triggers may cause a change in hemoglobin 

concentration slower than the event-related potential; however, they capture the neural activity 

underlying the speech production processes , and this indicates the success of using fNIRS to 

study speech production [50-53] means that sound triggers activate the motor cortex of the 

brain [54]. In a related context that the state of signal gain at the work of medical imaging 

techniques based on BCI independently and the accompanying different stages from the signal 

acquisition stage, signal preprocessing, feature extraction, feature fusion, to the classification 

stage and then the application in the real world, the work of the hybrid system goes through 

the same stages as in Figure 5. 

 

Figure 5 – fNIRS signal circuit as an individual system or as a hybrid system, comprises five steps of 

the BCI system 

Рисунок 5 – Сигнальная схема fNIRS как отдельная система или как гибридная система 

включает в себя пять этапов системы BCI 
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The feature extraction process is not without challenges because it is dependent in high 

percentage on prior complex knowledge in time, and this leads to the risk of information loss 

[55]. There are different and popular ways of feature extraction. Brain signals can be filtered 

into three bands as EEG or filtered into one band as fNIRS to improve the signal quality for 

subsequent analysis [27]. Decreased number of extracted features and reduced computational 

complexity can be achieved by combining nonlinear feature extraction with stacking ensemble 

learning technique and genetic optimization for EEG-fNIRS based HBCI systems. The 

language of hybridization is not limited only to medical technologies such as fNIRS with other 

techniques, it can extend to any stage, from obtaining a biological signal to practical application. 

The combination consisting of wavelet packet decomposition with canonical correlation 

analysis for motion artifact correction from single-channel EEG and fNIRS signals is better 

than using wavelet packet decomposition independently [25]. In order to demonstrate the 

performance advantage of single-method and mixed methods by using the conventional whale 

optimization algorithm and binary enhanced whale optimization algorithm demonstrated a high 

classification accuracy (90.37 ± 7.66 % and 94.22 ± 5.39 %, respectively). The classification 

performance exhibited a 3,85 % increase compared with the conventional whale optimization 

algorithm [56, 57]. 

If technological progress is employed by the development of modern algorithms that 

will reduce by a high percentage the motion artifacts of the EEG and fNIRS data, and this is 

obviously extremely important for the interpretation of signals and the correct diagnosis and 

treatment by a medical doctor for all applications based on BCI. fNIRS improves spatial 

resolution, cortical sensitivity, and quantification by anatomical recording, and this requires the 

development of algorithms. After the brain signal is acquired by hybrid methods, it must be 

processed using one of the analysis processors. Perhaps the most used is principle component 

analysis or general linear  model, which uses to analyze human neuroimaging data from both 

fMRI and fNIRS for the purpose of a non-verbal working memory task [7, 27, 40, 58]. After 

extracting features from fNIRS data, the classifier (as support vector machine) is necessary for 

the assignment of features, the identification of categories of motor activity (patterns), and then 

for the stage of practical application. This is the goal and success of each scientific experiment 

to crown it with practical application to reality. The continuous development of fNIRS along 

with machine learning algorithms can significantly expand the implementation of fNIRS as a 

hybrid system for monitoring at the clinical level and facilitate the general interpretation of 

brain signals [59]. The information carried by the acquired EEG signals is shown in Figure 6 

(A), while the biomarkers in the acquired fNIRS signal included the hemodynamic parameters 

which are (HBO), (HbR), and total-(HbT) hemoglobin, and the tissue oxygen saturation (SO2) 

shown in Figure 6 (B). The acquired signal of sEMG is the train of the motor-unit action 

potentials generated by the muscle fibers of the motor unit in response to nervous stimulation 

and can be analyzed in both time and frequency domains. Some common applications are shown 

in Figure 6 (C). 
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A-  

B-  

 
                         C- 

Figure 6 – Schematic representation of (a) EEG signal processing, (b) fNIRS and NIRS signal 

processing, and (c) EMG signal processing workflow and workflow  and biomarkers [60] 

Рисунок 6 – Схематическое представление (а) обработки сигналов ЭЭГ, (б) обработки 

сигналов fNIRS и NIRS и (в) обработки сигналов ЭМГ, а также рабочего процесса и 

биомаркеров [60] 

Current and expected applications of hybrid systems 

Technological systems such as EEG, sMEG and fNIRS contribute to their numerous 

uses independently in many areas such as movements, neurorehabilitation, neuroprosthetics 

etc, and this exists and is realistically tangible. Hybrid systems formed from a combination of 

these technologies that are superior that are superior on the individual system, as confirmed by 

scientific studies, will have the same applications as individual systems, but should be better, 

and this is the logic of hybrid system configuration. 

A hybrid EEG-NIRS system combined with body motion capture allowed us to 

distinguish Parkinson’s disease with more than 83 % accuracy for each individual [61], and 

more recently to monitor non-responding patients with acute brain injury,  obtaining 99 % 

accuracy in distinguishing patients that subsequently failed to recover recover consciousness 

[62]. The combination of EEG and fNIRS moreover, provides a useful approach for evaluating 
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guided robot-assisted rehabilitation. For example, Wang et al. found that BCI-based 

neurofeedback training in chronic stroke increased their EEG event-related 

synchronization/desynchronization during motor imagery and enhanced cortical activity 

measured with fNIRS [60, 63]. 

The expected and recommended applications of EEG-fNIRS are the assessment of the 

development of mental fatigue during flight simulation [64], and EEG technology is still the 

leader in this field. The sEMG and fNIRS methods are used together to allow continuous 

monitoring of a muscle during motor activity or rehabilitative exercises [6]. The feasibility of 

fusing sEMG and fNIRS signals has been demonstrated to improve motion classification 

accuracy for elbow amputees [47], enhancing the control performances of multifunctional 

myoelectric prostheses in clinical application [65]. 

In brief, hybrid systems can play their role in many fields, including: 

a) control of robotic devices, including exoskeletons, to increase human capabilities; 

b) because of its ability to transmit information, it can provide social interactions by 

allowing social applications to accurately assess and transmit a person’s emotions, and this leads 

to improvement of self-control and psychophysiological state quality; 

c) analysis and training of human resistance to specific stress effects; 

d) revealing and preventing brain pathologies;  

e) assessing and controlling psychophysiological states; 

f) rehabilitation of people after brain damage, for example, restoration of motor skills 

after a stroke. 

Conclusion 

Comparing hybrid systems (fNIRS plus another technical tool) with the analysis of 

modern systematic scientific studies, can say that the hybrid system achieves an advantage 

better than individual use, such as fNIRS with EEG, where the results of classification 

accuracy showed their superiority over individual uses of both technologies. This is 

confirmation that the hybridization of these two technologies may be a promising hybrid 

system of prosthesis control. fNIRS has the ability to measure hemodynamics and enable 

cortical tissues where there is no danger and no restrictions in movement mobility, in addition 

to its advantages that offset the disadvantages of other medical imaging technologies, can be 

a hybrid mode that is superior in performance to that technology when used independently. 

The improvement of the accuracy of signal classification from low to high is a good indicator 

and another confirmation that hybrid technologies are the most promising candidate 

technology for scientific and practical applications. The presence of positive correlations 

between cerebral oxygen changes and EMG signals during motor tasks supports the idea of 

creating a hybrid system between EMG and fNIRS. 

Despite this, there are hundreds of studies on our topic and successes  found in some 

hybrid systems and failures in others. The focus should be on future studies involving the 

study of hybrid systems that have met with success to ensure their implementation in the real 

world (for each subject prepared for the study according to a system (hybrid based on BCI or 

HBCIs). As well as focusing on those that did not achieve success. This should not create 

obstacles for future investigations using fNIRS alone. For the upcoming future research and 

after proving that hybrid systems are superior on the individual system, questions and 

challenges come in which hybrid systems such as fNIRS+EEG or fNIRS+EMG will be the most 

promising and proven  technology to be used for treating a disease and disabilities, or the 

individual system that is still in the research circle will be the leader in diagnosis and treatment 

if modern applied sciences can add their fingerprints to solve the challenges and disadvantages 

facing each system. 
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