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Abstract. This paper presents an optimized min sum (MS) decoding algorithm with low complexity and 
high decoding performance for LDPC short codes. The MS algorithm has low computational complexity 
and is simple to deploy. The MS decoding algorithm, while demonstrating a performance gap compared 
to the belief propagation (BP) and likelihood ratio BP (LLR-BP) decoding algorithms, shows significant 
potential for optimization. To improve the decoding performance of traditional MS algorithm, secondary 
external information is introduced into the control node (CNs) update operations of MS algorithm and 
optimized as adaptive exponential correction factor (AECF). The optimized MS algorithm is named as 
adaptive exponential exponential MS decoding algorithm (AEMS). The decoding efficiency of the 
AEMS algorithm for regular, irregular and LDPC codes of the Consultative Committee on Space Data 
Systems (CCSDS) was extensively tested, then the complexity of the AEMS algorithm was analyzed 
and compared with other decoding algorithms. The results show that the AEMS algorithm outperforms 
the offset MS (OMS) and normalized MS (NMS) algorithms in decoding performance, and outperforms 
the BP algorithm as the signal-to-noise ratio (SNR) gradually increases. 
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Разработка адаптивного экспоненциального алгоритма 
декодирования минимальной суммы 

Чжан Вэйцзя, Ибрагим Мухамад, В.М. Саклаков 
Национальный исследовательский Томский политехнический университет, Томск, 

Российская Федерация 
Резюме. В статье представлен оптимизированный алгоритм декодирования минимальной суммы 
(MS) с низкой сложностью и высокой производительностью декодирования для коротких кодов 
LDPC. Алгоритм MS имеет низкую вычислительную сложность и прост в развертывании. По 
сравнению с алгоритмом декодирования распространения убеждения (BP) и отношения 
правдоподобия BP (LLR-BP) он показывает разрыв в производительности декодирования, но 
алгоритм декодирования MS имеет высокий потенциал оптимизации. Для улучшения 
производительности декодирования традиционного алгоритма MS в операции обновления 
контрольных узлов (CN) алгоритма MS вводится вторичная внешняя информация и 
оптимизируется как адаптивный экспоненциальный поправочный коэффициент (AECF). 
Оптимизированный алгоритм MS назван адаптивным экспоненциальным алгоритмом 
декодирования MS (AEMS). Эффективность декодирования алгоритма AEMS для обычных, 
нерегулярных и LDPC-кодов консультативного комитета по системам космических данных 
(CCSDS) была всесторонне протестирована, затем был проведен анализ и сравнение сложности 
алгоритма AEMS с другими алгоритмами декодирования. Результаты показывают, что алгоритм 
AEMS превосходит алгоритмы смещенного MS (OMS) и нормализованного MS (NMS) по 
производительности декодирования, а также превосходит алгоритм BP по мере постепенного 
увеличения отношения сигнал/шум (SNR). 
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Introduction 
Low density parity check (LDPC) codes were first proposed by Dr. Gallager in 1962 

and are a class of coding techniques with strong error correction capability [1]. Since LDPC 
codes have the advantages of low decoding complexity, parallel implementation, flexible 
structure, and low bit error level, they have been widely used in practical systems [2], and have 
been adopted as the 5G new radio (NR) channel coding scheme in the enhanced mobile 
broadband (eMBB) scenario [3]. With the deployment of 5G and the emergence of massive 
Internet of Things (IoT) devices, the importance of short to medium code decoders with high 
decoding performance, low complexity and low latency continues to grow [4]. 

 LDPC codes achieve close to Shannon channel capacity through the belief propagation 
decoding algorithm (BP) and the BP likelihood ratio (LLR-BP) decoding algorithm, but usually 
for LDPC codes with relatively long code lengths [5]. Moreover, the BP and LLR-BP 
algorithms have high computational complexity, which makes it difficult to deploy for IoT 
devices with simple structure and low cost. On the basis of the LLR-BP algorithm, the min sum 
(MS) algorithm is proposed to convert the logarithmic operation in the LLR-BP algorithm into 
a comparison and summation operation [6], which greatly simplifies the computational 
complexity and is easy to deploy to IoT devices. The MS algorithm has gained simple 
computational complexity at the expense of decoding performance. In order to improve the 
decoding performance of the MS algorithm, the offset MS (OMS) and normalized MS (NMS) 
algorithms [7, 8] were proposed. These improved MS algorithms often use fixed error 
correction factors, and compared with the BP algorithm, there is still a decoding gap. In order 
to achieve better decoding performance, more effective optimizations in decoding are needed. 

The derivation from the LLR-BP algorithm to the MS algorithm reveals that the MS 
algorithm simplifies the control node (CNs) update formula of the LLR-BP algorithm by 
replacing all external information with the smallest external information, thereby streamlining 
complex calculations. On this basis, we additionally introduce secondary (sub-smallest) external 
information value. In order to allow the sub-smallest external information value to optimize the 
check node update operation of the MS algorithm, we mathematically deform the sub-small 
external information value and use it as an exponential correction factor to improve the 
decoding performance of the MS algorithm. Compared with some existing MS algorithm 
optimization methods, we apply the adaptive exponential correction factor (AECF), which 
significantly improves the decoding performance of the MS algorithm. 

The development process of decoding algorithms 
The derivation process of the AEMS algorithm is easy to understand, but the derivation 

process involves a lot of knowledge about other decoding algorithms, especially the derivation 
from likelihood ratio BP (LLR-BP) algorithm to MS algorithm. In this section, we will briefly 
introduce the basic knowledge involved. 

As the earliest proposed soft-decision decoding method, the BP algorithm has excellent 
decoding capabilities [1]. However, the BP algorithm contains a large number of multiplication 
operations and takes a long time to calculate, which also places higher requirements on 
hardware implementation. In order to simplify the BP decoding algorithm, the LLR-BP 
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decoding algorithm, MS decoding algorithm, NMS decoding algorithm, OMS decoding 
algorithm have emerged one after another. Decoding algorithms are generally optimized using 
mathematical methods [9, 10]. In recent years, with the popularization of machine learning and 
the improvement of computer computing levels, machine learning are increasingly used to 
optimize decoding algorithms [4, 11]. Actually, whether the MS algorithm is optimized by 
mathematical methods or machine learning schemes, it is also difficult for the optimized MS 
algorithm to surpass the BP algorithm in decoding performance. The evolution process of soft 
decision decoding can be summarized as shown in Figure 1.  

 
Figure 1 – Evolution process of soft decision decoding method 

Рисунок 1 – Процесс эволюции метода декодирования мягкого решения 

The soft decision decoding algorithm is an iterative decoding method based on the 
Tanner graph, where messages are exchanged back and forth between VNs and CNs during the 
iterative process. After several iterations, the message values stabilize, allowing for an optimal 
decision to be made accordingly [12]. In the decoding process, the information generated from 
the updates of CNs and VNs is referred to as external information, while the initial information 
received from the channel at the start of the decoding is known as the posterior probability.  

Table 1 – Symbol explanation in the calculation process 
Таблица 1 – Интерпретация символов при расчетах 

Symbols Meaning 
𝑣𝑣𝑖𝑖 The I variable node 
𝑐𝑐𝑗𝑗 The j check node 

𝑟𝑟𝑗𝑗𝑖𝑖𝑙𝑙 (𝑏𝑏) The external information passed from check node j to variable node i in the lth 
iteration, b = 0, 1 

𝑞𝑞𝑖𝑖𝑗𝑗𝑙𝑙 (𝑏𝑏) The external information passed from variable node i to check node j in the lth 
iterations, b = 0, 1 

𝐶𝐶(𝑖𝑖) The set of all check nodes connected to the ith variable node 
𝑉𝑉(𝑗𝑗) The set of all variable nodes connected to the jth check node 
𝐶𝐶(𝑖𝑖) The set of check nodes connected to the ith variable node except the jth check node 

𝑉𝑉(𝑗𝑗) ∖ 𝑖𝑖 The set of variable nodes connected to the jth check node except the ith variable node 
𝑃𝑃𝑖𝑖(𝑏𝑏) The posterior probability of receiving 𝑦𝑦𝑖𝑖 at the receiving end, corresponding to the code 

word 𝑐𝑐𝑖𝑖 = 𝑏𝑏 at the sending end, b = 0, 1 
𝑞𝑞𝑖𝑖𝑙𝑙(𝑏𝑏) The posterior probability information of the ith variable node of the lth iteration, b = 0, 

1 
 
The LLR-BP algorithm is a logarithmic version of the BP algorithm and they have the 

same decoding performance. By taking logarithms on both sides of the equal sign of the BP 
decoding algorithm formula, multiple multiplications are turned into logarithmic domain 
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addition calculations, making the BP algorithm easier to implement [13]. Since the BP 
algorithm computational process, and the derivation of BP to LLR-BP algorithm is not the focus 
of this paper, we start with LLR-BP algorithm in detail. The specific LLR-BP decoding 
algorithm as follows and the variable symbols designed in the calculation formula are shown 
in Table 1. 

1) Initialization: Calculate the initial message of VNs as shown in (1). 

𝐿𝐿0�𝑞𝑞𝑖𝑖𝑗𝑗� = 𝐿𝐿(𝑃𝑃𝑖𝑖) = ln
𝑃𝑃𝑖𝑖(0)
𝑃𝑃𝑖𝑖(1)

(1) 

2) CNs Update: The external message sent from the check nodes (CNs) to the variable 
nodes (VNs) is calculated as described in (2). 

𝐿𝐿𝑙𝑙�𝑟𝑟𝑗𝑗𝑖𝑖� = 2 tanh−1 � �  
𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖

tanh�
𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗�

2
�� (2) 

3) VNs Update: Calculate the external message passed from the VNs to the CNs as 
shown in (3). 

𝐿𝐿𝑙𝑙�𝑞𝑞𝑖𝑖𝑗𝑗� = ln
𝑃𝑃𝑖𝑖(0)∏  𝑗𝑗 ′∈𝐶𝐶(𝑖𝑖)∖𝑗𝑗 𝑟𝑟𝑗𝑗′𝑖𝑖

𝑙𝑙 (0)

𝑃𝑃𝑖𝑖(1)∏  𝑗𝑗 ′∈𝐶𝐶(𝑖𝑖)∖𝑗𝑗 𝑟𝑟𝑗𝑗′𝑖𝑖
𝑙𝑙 (1)

= 𝐿𝐿(𝑃𝑃𝑖𝑖) + �  
𝑗𝑗 ′∈𝐶𝐶(𝑖𝑖)∖𝑗𝑗

𝐿𝐿𝑙𝑙�𝑟𝑟𝑗𝑗′𝑖𝑖� (3) 

4) Calculate the total VNs information: Calculate all the messages obtained by the VNs 
as shown in (4). If the value of 𝐿𝐿𝑙𝑙(𝑞𝑞𝑖𝑖) is larger than 0, 𝑣𝑣𝑖𝑖 is determined to be 0, otherwise 𝑣𝑣𝑖𝑖 is 
determined to be 1, then the code word 𝑣𝑣

~
 obtained. 

𝐿𝐿𝑙𝑙(𝑞𝑞𝑖𝑖) = ln
𝑃𝑃𝑖𝑖(0)∏  𝑗𝑗∈𝐶𝐶(𝑖𝑖) 𝑟𝑟𝑗𝑗𝑖𝑖𝑙𝑙 (0)
𝑃𝑃𝑖𝑖(1)∏  𝑗𝑗∈𝐶𝐶(𝑖𝑖) 𝑟𝑟𝑗𝑗𝑖𝑖𝑙𝑙 (1)

= 𝐿𝐿(𝑃𝑃𝑖𝑖) + �  
𝑗𝑗∈𝐶𝐶(𝑖𝑖)

𝐿𝐿𝑙𝑙�𝑟𝑟𝑗𝑗𝑖𝑖� (4) 

5) Decoding decision: If 𝑣𝑣
~
𝐻𝐻𝑇𝑇 = 0 or the number of iterations reaches the maximum 

value, then the decoding stops, otherwise the algorithm returns to step 2. 
The LLR-BP algorithm significantly reduces the number of multiplication operations 

while maintaining decoding performance. However, the calculation of the CN updates involves 
many tanh functions, which can be efficiently implemented using lookup table operations. 
When the LDPC code length is very long and a large number of table lookup operations will 
cause memory usage problems. In order to solve this problem, MS algorithm was proposed. 
MS algorithm simplifies the calculation of (2) even further by recognizing that the term 
corresponding to the smallest 𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗) dominates the product term and so the product can be 
approximated by a minimum a simplified LLR-BP algorithm was developed [6]. Rewrite the 
tanh function of (2) into the product of the sign function and the absolute value function as 
shown in (5). 

𝐿𝐿𝑙𝑙�𝑟𝑟𝑗𝑗𝑖𝑖� = 2 �  
𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 �𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗�� tanh−1 � �  
𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖

tanh�
�𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗��

2
�� (5) 

Then replace ∏  𝑖𝑖 ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖 tanh (
|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)|

2
) in (5) with tanh (

|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚1|

2
). Combing 

with the 2tanh−1 (tanh (𝑥𝑥
2
)) curve shown in Figure 2, we obtain the CNs information update 

formula of the MS algorithm as shown in (6). 
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𝐿𝐿𝑙𝑙�𝑟𝑟𝑗𝑗𝑖𝑖� = �  
𝑖𝑖 ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 �𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗�� 𝑚𝑚𝑖𝑖𝑠𝑠
𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖

�𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗��  (6) 

The calculation framework of the MS algorithm is the same as that of the LLR-BP 
algorithm, except that the CNs update formula is simpler. 

 
Figure 2 – MS related different curves 

Рисунок 2 – Связанные с MS различные кривые функции тангенса 

MS algorithm reduces the computational complexity of calculating 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖), the CNs 
update formula (6) is a simplified scheme rather than an accurate calculation, so there will be a 
difference between 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀 and 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. According to the tanh (𝑥𝑥

2
) curve in Figure 2, it 

can be intuitively found that the any tanh (
|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)|

2
< 1, and as the number of consecutive 

multiplications increases, the ∏  𝑖𝑖 ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖 tanh (
|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)|

2
)  value must become smaller and 

smaller, so ∏  𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖 tanh (
|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)|

2
) < tanh (

|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚1|

2
) . Therefore, the obtained 

|𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀| must be overestimated. Therefore, two more effective solutions, the NMS algorithm 
and the OMS algorithm are proposed [7] [8]. The main idea of the NMS algorithm is to adjust 
the calculation result by multiplying by a correction factor α (0 < α < 1) in the step of calculating 
the CNs update information value as shown in (7). 

𝐿𝐿𝑙𝑙�𝑟𝑟𝑗𝑗𝑖𝑖� = 𝛼𝛼 � �  
𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 �𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗�� 𝑚𝑚𝑖𝑖𝑠𝑠
𝑖𝑖 ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖

�𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗���     (7) 

The main idea of the OMS algorithm is to subtract a correction factor β (β > 0) in the 
step of calculating the CNs update information value as shown in (8). 

               𝐿𝐿𝑙𝑙�𝑟𝑟𝑗𝑗𝑖𝑖� = ∏  𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 �𝐿𝐿
𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗��𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑚𝑚𝑖𝑖𝑠𝑠

𝑖𝑖 ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖
�𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗�� − 𝛽𝛽, 0�                (8) 

The NMS algorithm and the OMS algorithm, although processed in different ways, the 
core idea of both is to compensate for overestimating the update information value of CNs. 
However, both NMS algorithm and OMS algorithm have their own drawbacks [14]. The 
normalization factor α and the offset factor β can effectively correct the CNs update information 
value in the MS algorithm and improve the decoding performance, but α and β are constant 
during the decoding process and cannot be changed adaptively. Therefore, the NMS and OMS 
algorithms can only achieve limited improvements. In fact, NMS algorithm and OMS algorithm 
can hardly achieve the decoding performance of LLR-BP algorithm.  

Although the NMS and OMS algorithms process CNs update formula differently, both 
fundamentally aim to address the overestimation of update information values of CNs. However, 
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each algorithm has its limitations [14]. The normalization factor α and the offset factor β can 
effectively adjust the CNs update information values in the MS algorithm, enhancing decoding 
performance, but α and β remain constant during the decoding process, they cannot adaptively 
change. As a result, the improvements offered by the NMS and OMS algorithms are limited, 
and neither can match the decoding performance of the LLR-BP algorithm. 

Adaptive exponential min sum algorithm model 
In this paper, we directly use a simple mathematical scheme to optimize the MS 

algorithm. Its essence is to optimize the calculation method of 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀 so that its value will be 
closer to 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. The |𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚1| has a great influence on 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖). Just introducing 
|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚1| can make the MS algorithm obtain considerable decoding ability, although it 
is not as good as the LLR-BP algorithm. Based on the MS algorithm, we introduce 
|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚2|  to reduce 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀, which can further improve the decoding performance of 
MS algorithm.  

The inability of the normalization factor α and the offset factor β to change adaptively 
with the iterative process of the algorithm is the main reason for the limited performance of the 
NMS and OMS algorithms. |𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚2� itself changes adaptively with the iterative process. 
In order to make  |𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚2|  reduce the value of 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀, and considering the large 
number of nonlinear tanh operations in the 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  calculation, |𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚2| can be 
used as an adaptive exponential correction factor (AECF) to reduce the value of 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀 and 
provide nonlinear characteristics. |𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚2| cannot be directly used as an exponential 
correction factor, and needs to be deformed and optimized to keep its reduction effect on the 
min1 value within a reasonable range before it can play an optimization role. In the following 
we describe the derivation process of the adaptive exponential min sum (AEMS) algorithm. 
Since |𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚1| and |𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)𝑚𝑚𝑖𝑖𝑚𝑚2| are frequently used, they represent the minimum 
and second minimum of external information, so we use 𝐸𝐸𝐼𝐼𝑚𝑚1 and 𝐸𝐸𝐼𝐼𝑚𝑚2 instead of them to 
simplify the expression.  

Calculating 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 requires determining whether 𝐸𝐸𝐼𝐼𝑚𝑚2 ≤  1 or not. If 𝐸𝐸𝐼𝐼𝑚𝑚2 ≤  1, 
then 𝐸𝐸𝐼𝐼𝑚𝑚1 and 𝐸𝐸𝐼𝐼𝑚𝑚2 have the mathematical relationship as shown in (9). 

0 < 𝐸𝐸𝐼𝐼𝑚𝑚1 ≤ 𝐸𝐸𝐼𝐼𝑚𝑚2 ≤ 1 (9) 
  According to the characteristics of the tanh function, the mathematical relationship 
shown in (10) can be obtained. 

tanh2 �
𝐸𝐸𝐼𝐼𝑚𝑚1

2
� ≤ tanh �

𝐸𝐸𝐼𝐼𝑚𝑚1
2

� tanh �
𝐸𝐸𝐼𝐼𝑚𝑚2

2
� ≤ tanh �

𝐸𝐸𝐼𝐼𝑚𝑚1
2

� tanh �
1
2
�       (10) 

We follow the idea of MS algorithm and replace ∏  𝑖𝑖  ′∈𝑉𝑉(𝑗𝑗)∖𝑖𝑖 tanh (
|𝐿𝐿𝑙𝑙−1(𝑞𝑞𝑖𝑖′𝑗𝑗)|

2
) in (5) with  

tanh (𝐴𝐴𝐼𝐼𝑚𝑚1
2

)tanh (𝐴𝐴𝐼𝐼𝑚𝑚2
2

) . Combined with the 2tanh−1 (tanh (𝑥𝑥
2
)tanh (𝑥𝑥

2
) and 

2tanh−1 (tanh (𝑥𝑥
2
)tanh (1

2
)) curves shown in Figure 3, the following mathematical relationship 

can be obtained as shown in (11), (12) and it can be seen that 2tanh−1 (tanh (𝐴𝐴𝐼𝐼𝑚𝑚1
2

)tanh (𝐴𝐴𝐼𝐼𝑚𝑚2
2

)) 
value  will be located in the area 1, 2. Different areas are indicated by red numbers in Figure 3. 

2 tanh−1 �𝑡𝑡𝑚𝑚𝑠𝑠ℎ2 �
𝐸𝐸𝐼𝐼𝑚𝑚1

2
�� ≤ 2tanh−1 (tanh �

𝐸𝐸𝐼𝐼𝑚𝑚1
2

� tanh �
𝐸𝐸𝐼𝐼𝑚𝑚2

2
� (11) 
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2tanh−1 (tanh �
𝐸𝐸𝐼𝐼𝑚𝑚1

2
� tanh �

𝐸𝐸𝐼𝐼𝑚𝑚2
2

� ≤ 2 tanh−1 �tanh �
𝐸𝐸𝐼𝐼𝑚𝑚1

2
� tanh �

1
2
�� (12) 

The influence of AECF on the CNs update information value should be controlled 
within a certain range to ensure that AECF can improve the decoding performance of the MS 
algorithm. Use 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 = 𝐸𝐸𝐼𝐼𝑚𝑚2 − 𝐸𝐸𝐼𝐼𝑚𝑚1 to represent the difference between the two. As 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 
becomes smaller, this means that 𝐸𝐸𝐼𝐼𝑚𝑚2  is closer to 𝐸𝐸𝐼𝐼𝑚𝑚1  , and in the extreme case 𝐸𝐸𝐼𝐼𝑚𝑚2 =
𝐸𝐸𝐼𝐼𝑚𝑚1 → 0 , so 𝐸𝐸𝐼𝐼𝑚𝑚2 will make a greater degree of reduction to 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀 . As 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 becomes 
larger, this means that 𝐸𝐸𝐼𝐼𝑚𝑚2 is closer to 1 and in the extreme case 𝐸𝐸𝐼𝐼𝑚𝑚1 → 0, 𝐸𝐸𝐼𝐼𝑚𝑚2 = 1, so 
𝐸𝐸𝐼𝐼𝑚𝑚2 will make a smaller degree of reduction to  𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀. According to the changing trend of 
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 and the mathematical relationship between 𝐸𝐸𝐼𝐼𝑚𝑚1 and 𝐸𝐸𝐼𝐼𝑚𝑚2, we can set up the AECF 𝜆𝜆 for 
the AEMS algorithm as shown in (13). Bringing in the values of the extreme cases above 
provides a clearer understanding. 

𝜆𝜆 = 2 − (𝐸𝐸𝐼𝐼𝑚𝑚2 − 𝐸𝐸𝐼𝐼𝑚𝑚1) (13) 

 
Figure 3 – AEMS related different tanh function curves 

Рисунок 3 – Связанные с AEMS различные кривые функции тангенса  

Substituting 𝜆𝜆 as an exponential factor in (6), we get AEMS algorithm CNs information 
update formula as shown in (14). Here we have used 𝐸𝐸𝐼𝐼 instead of the above 𝐿𝐿𝑙𝑙−1�𝑞𝑞𝑖𝑖′𝑗𝑗�, please 
pay attention to the difference 

 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = �  
   

𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐼𝐼)𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆,𝐸𝐸𝐼𝐼𝑚𝑚2 ≤ 1      (14) 

The following is a mathematical proof of the rationality of the𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀  value. 
Combined with (9) the value range of 𝐸𝐸𝐼𝐼𝑚𝑚2, it can be seen that 𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆 has the mathematical 
relationship shown in (15) below. 
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𝐸𝐸𝐼𝐼𝑚𝑚1 2 ≤ 𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆 ≤ 𝐸𝐸𝐼𝐼𝑚𝑚1 1+𝐴𝐴𝐼𝐼𝑚𝑚1 (15) 

Combined with the 𝑚𝑚2 and 𝑚𝑚1+𝑥𝑥 curves shown in Figure 3, it can be seen that  𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆 
value will be located in the area 1,3. When 𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆 is located in area 1, it has the following 
mathematical relationship as shown in (16). 

2tanh−1 (tanh (
𝐸𝐸𝐼𝐼𝑚𝑚1

2
)tanh (

𝐸𝐸𝐼𝐼𝑚𝑚2
2

)) ≈ 𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆 < |𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀| (16) 

When  𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆 is located in area 3, it has the following mathematical relationship as 
shown in (17). Taking (16) (17) together, the CNs update formula 𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀_of AEMS is 
more reasonable compared to MS. 

2tanh−1 (tanh (
𝐸𝐸𝐼𝐼𝑚𝑚1

2
)tanh (

𝐸𝐸𝐼𝐼𝑚𝑚2
2

)) < 𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆 < |𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀| (17) 

Here we have discussed the case of 𝐸𝐸𝐼𝐼𝑚𝑚2 ≤  1 and prove the rationality of the value 
from mathematical logic and function graph. When 𝐸𝐸𝐼𝐼𝑚𝑚2 >  1, 𝐸𝐸𝐼𝐼𝑚𝑚2 has no effect on reducing 
𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝑀𝑀𝑀𝑀, then the original CNs update formula of MS algorithm is used without changing as 
shown in (18). 

𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = �  
   

𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐼𝐼)𝐸𝐸𝐼𝐼𝑚𝑚1,𝐸𝐸𝐼𝐼𝑚𝑚2 > 1.   (18) 

Finally, the CNs update formula of the AEMS algorithm is determined as shown in (19). 

                                       

⎩
⎪
⎨

⎪
⎧𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = �  

   

𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐼𝐼)𝐸𝐸𝐼𝐼𝑚𝑚1 𝜆𝜆,𝐸𝐸𝐼𝐼𝑚𝑚2 ≤ 1,

𝐿𝐿𝑙𝑙(𝑟𝑟𝑗𝑗𝑖𝑖)𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = �  
   

𝑠𝑠𝑠𝑠𝑠𝑠(𝐸𝐸𝐼𝐼)𝐸𝐸𝐼𝐼𝑚𝑚1,𝐸𝐸𝐼𝐼𝑚𝑚2 > 1.
                                   (19) 

Simulation and comparison with others decoding algorithms 
In this section, we compare the performance of the AEMS algorithm introduced in 

above with the LLR-BP, MS, and NMS algorithms in different LDPC codes, including regular 
LDPC codes, irregular LDPC codes, and three short block length CCSDS LDPC codes 
recommended by CCSDS 231.1-O-1 for TC synchronization and channel coding [15]. In the 
simulation, we applied additive white Gaussian noise (AWGN) channel and transmitted the 
coded bits through binary phase shift keying (BPSK) modulation, with the SNR range set to 
1.0dB to 4.5dB, and frames set to 1000, and then calculated BER of different algorithms.  

We use (2018, 1009) regular LDPC codes and (2018, 1009) irregular LDPC codes to 
test the decoding performance of AEMS algorithm, and the maximum number of iterations is 
set to 20. Since the structures of irregular LDPC codes and regular LDPC codes are quite 
different, this experiment is mainly to test the applicability of the AEMS algorithm in regular 
LDPC codes and irregular LDPC codes. The simulation results, displayed in Figure 4 (a) and 
Figure 4 (b), clearly demonstrate that the proposed AEMS algorithm significantly outperforms 
the MS and NMS algorithms, achieving superior BER performance at moderate to high SNR 
values. In Figure 4 (a), it is evident that when the SNR exceeds 2.0 dB, the BER performance 
of the AEMS algorithm begins to surpass that of the LLR-BP algorithm. The AEMS algorithm 
is the first to complete decoding process and has about a 0.5dB coding gain compared to the 
LLR-BP algorithm. In Figure 4 (b), it is shown that when the SNR exceeds 2.1 dB, the BER 
performance of the AEMS algorithm gradually improves, surpassing the LLR-BP algorithm. 
When the two complete decoding, the AEMS algorithm has about 0.1dB coding gain compared 
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to the LLR-BP algorithm. The above results prove that the AEMS algorithm has excellent 
performance in both regular and irregular LDPC codes, and the structure of LDPC codes has 
limited impact on it. 

   
 a  b  

Figure 4 – Simulation results: a – BER in regular LDPC codes; b – BER in irregular LDPC 
codes 

Рисунок 4 – Результаты моделирования: a – BER в обычных кодах LDPC; b – BER в 
нерегулярных кодах LDPC 

Two short block lengths recommended by CCSDS 231.1-O-1 for TC synchronization 
and channel coding are suitable for remote control instructions with short code lengths, and 
have good error correction capabilities and low decoding complexity [15]. We use (64, 128) 
and (256, 512) CCSDS LDPC codes and set the maximum number of iterations to 20 to test the 
practicality of the AEMS algorithm. 

     
 a b  

Figure 5 – Simulation results: a – BER of (64, 128) CCSDS; b – BER of (256, 512) CCSDS 
Рисунок 5 – Результаты моделирования: a – BER в (64, 128) CCSDS; b – BER в (256, 512) 

CCSDS 

From Figure 5, it can be seen that the AEMS algorithm has excellent decoding 
performance in two short block CCSDS LDPC codes. Under medium and high SNR conditions, 
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the AEMS algorithm decoding performance is optimal, basically when the SNR is greater than 
2.5dB, the BER performance of AEMS begins to surpass LLR-BP algorithm. Since the code 
length of (64, 128) CCSDS LDPC codes is too short, the simulated BER curve is not very 
smooth. The BER curve of the (256, 512) CCSDS LDPC code is relatively smooth. As can be 
seen from Figure 5 (b), taking the BER performance of the AEMS algorithm when the SNR is 
3 dB as the standard, AEMS has a 0.25 dB coding gain compared to the LLR-BP algorithm. 
The above results prove that the AEMS algorithm has high application value and is very suitable 
for short code length and high code rate control instruction type LDPC codes and its decoding 
performance is better than the LLR-BP algorithm in practical applications.  
  Compared to the MS algorithm, the AEMS algorithm adds one comparison, two addition 
operations, and one exponentiation operation in each calculation of the CN information value. This 
enhancement results in excellent decoding performance with only a modest increase in computational 
complexity and it is very suitable for the IoT devices that are mainly used for the short code-
length and high-rate control commands. 

Conclusion 
In this paper, we propose the AEMS algorithm, which has excellent decoding 

performance with a slight increase in computational complexity. Through extensive simulations, 
our results have demonstrated that the AEMS algorithm consistently outperforms both the 
conventional MS and NMS algorithms. Notably, the AEMS algorithm exhibits superior 
decoding accuracy, surpassing the LLR-BP algorithm across various LDPC code scenarios, 
including regular, irregular, and short block CCSDS LDPC codes with low code rates. 
Moreover, considering the evolving landscape of IoT devices, the AEMS algorithms blend of 
low computational complexity, minimal SNR requirements, and exceptional decoding 
capabilities positions it as a compelling choice for future IoT device decoding algorithms. 
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