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Abstract. Currently, deep learning, as a hot research direction, has yielded fruitful research results in
natural language processing and graph recognition and generation, such as ChatGPT and Sora.
Combining deep learning with decoding algorithms for channel coding has also gradually become a
research hotspot in the field of communication. In this paper, we use deep learning to improve the
adaptive exponential min sum (AEMS) algorithm for LDPC codes. Initially, we extend the iterative
decoding procedure between check nodes (CNs) and variable nodes (VNs) in the AEMS decoding
algorithm into a feedforward propagation network based on the Tanner graph derived from the H matrix
of LDPC codes. Second, in order to improve the model training efficiency and reduce the computational
complexity, we assign the same weight factor to all the edge information in each iteration of the AEMS
decoding network, which reduces the computational complexity while guaranteeing the decoding
performance, and we call it the shared neural AEMS (SNAEMS) decoding network. The simulation
results show that the decoding performance of the proposed SNAEMS decoding network outperforms
that of the conventional AEMS decoder, and its coding gain is gradually enhanced as the code length
increases.
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HeliponHasi ceThb AJI ONTUMHU3ALNNHA AAANTUBHOTO
IKCMOHEHIIMAJIBHOT0 AJITOPUTMA JeKOAUPOBAHUS MUHUMAJILHOM
CYMMBbI

Yskan Boituzs=, U6parum Myxaman, B.M. Caknakos, lymanra Hamun K. Jxasikoau

Hayuonanvnuiii uccnedosamenvcxuii Tomckuti nonumexnudeckuil ynusepcumem, Tomck,
Poccuiickas @eoepayus

Pesziome. B Hactosiee Bpems ri1y0okoe 00yueHHe KaK aKTyalbHOE HAlpaBJIEHUE UCCIIEIOBAaHUN 1alio
IUIOIOTBOPHBIE PE3YJIbTAaThl B 0071acTH 00pabOTKU €CTECTBEHHOI'O SI3bIKa, PACIIO3HABAHUSI U TeHEpaLiu
rpagoB, nampumep, ChatGPT u Sora. OObeauHeHue riIyO0OKOro OOYYEHHS C alrOpUTMaMu
JEKONUPOBAaHUS Ul KaHAJIBHOIO KOJMPOBAaHUSA TaKXKe IIOCTCICHHO CTAHOBUTCS AaKTyalbHBIM
HallpaBJIEHHEM HCCIIEeOBaHUN B 001acTH cBsA3U. B 3TOH cTathe Mbl UCHIONB3yeM IIyOoKoe o0yueHHe
U yIyYIIEeHUs aJanTUBHOTO aJropuTMa SKCHOHEHUMATbHOW MHUHHMaNbHOH cymmbl (AEMS) s
LDPC-xonoB. Bo-mepBbIX, MBI pacliupseM HTEPaTHBHYIO INPOLEAYPY MACKOJUPOBAHUS MEXKIY
KOHTposbHBIMHA y3iamu (CNs) n nepemMeHHbIMHU y3mamu (VNs) B anroputme aexogupoBanust AEMS B
CEeTh PacIpOCTpaHECHHUs C MPSIMOW Tepenadeii, OCHOBaHHYIO Ha rpade TanHepa, momydeHHOM U3 H-
matpuubl LDPC-kon0B. Bo-BTopsix, 11 noBeimenns 3phekTuBHOCTH 00yUeHNsT MOAETH U CHUYKEHUS
BBEIYHCIIUTEIHLHON CIOKHOCTH MBI MPUCBAaWBaeM OJMHAKOBBIA BECOBOM KOd(D(UIMEHT BCel KpaeBoi
UHQOpPMAIMK B KAXIOH HTepanuu ceTd JexoaupoBaHuss AEMS, 9To CHMKAeT BBIYMCIUTEILHYIO
CIIO)KHOCTBh M TapaHTupyeT 3((EeKTUBHOCTD JEKOJUPOBAHMS, U Mbl Ha3blBaeM ee 00Iiell HeMpOHHOM
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ceteto gpexomupoBanus AEMS (SNAEMS). PesynpTaThl MOIETHpPOBAHWS ITOKA3BIBAIOT, YTO
MIPOU3BOAUTEILHOCTE JEKOIUPOBAHUS TIPEIJIOKEHHON ceTn aekoaupoBanuss SNAEMS npeBocxomut
MPOU3BOAUTEIBHOCTh 00bIUHOTO jekonepa AEMS, a koddduiueHT yCWIeHHS KOIUPOBAHUS
MOCTENIEHHO YBEIIMYMBACTCS TI0 MEPE YBEIMYCHHUS JITUHBI KOJIA.

Knrouesvie cnosa: LDPC, riny6okoe oOydeHHe, HEHPOHHAs CETh, SKCIOHCHIMAILHBIN alrOPUTM,
MUHUMAaJbHAs CyMMa.

Mna yumupoeanusn: Yxan Boiiias, Moparum Myxaman, CakmakoB B.M., Jymanra Hamun K.
Jxaskomu. HelipoHHass ceTh Ui ONTHMH3AIMM aJalTHBHOIO HKCIOHEHIIMAILHOTO ajJrOpUTMa
JICKOJUPOBAHUS MHHHMAJIbHOH CYMMBI. Mooeruposanue, onmumuzayus u UHDOPMAYUOHHBIE
mexnonoeuu. 2025;13(1). (Ha anrm.). URL: https:/moitvivt.ru/ru/journal/pdf?id=1807 DOI:
10.26102/2310-6018/2025.48.2.026

Introduction

Deep learning simulates the working mode of the human brain by constructing a multi-
layer neural network [1]. It has been widely used in face recognition, natural language
processing and autonomous driving [1, 2]. Low Density Parity Check (LDPC) code is a linear
block code firstly introduced by Gallager in 1962 [3]. Its characteristic is that the decoding
capability increases with the increase of code length. It has become the main channel coding
for 5G due to its high decoding throughput and excellent decoding performance. Deep learning
can also be well combined with the decoding algorithm of LDPC code to improve its decoding
performance [4, 5].

Soft decision approaches to LDPC codes, including the belief propagation (BP)
algorithm and the min sum (MS) algorithm, are iterative algorithms based on Tanner graphs
and can be relatively easily expanded into a neural network structure [6]. When the Tanner
graph is expanded, each iterative decoding process is considered separately and each side
information is assigned a weight. The resulting decoder is a neural network structure. The
performance of this "neural network decoder" is better than that of traditional soft decision
decoding algorithms because they use appropriate weights to enhance the performance of the
algorithm during the iteration process through training.

In this paper, we use neural networks to optimize the adaptive exponential min sum
(AEMS) decoding algorithm. Since the BP algorithm requires extensive logarithmic and
multiplication operations for calculating check node (CN) messages. In contrast, the MS
decoding algorithm substantially decreases computational demands and device complexity, but
at the expense of decoding performance [7]. The AEMS decoding algorithm employs an
enhanced MS algorithm featuring an adaptive exponential correction factor, resulting in
superior decoding performance compared to the BP algorithm, while preserving lower
complexity [8]. We extend the iterative process between the CNs and the variable nodes (VNs)
in the AEMS algorithm into a feedforward propagation network to enhance decoding
performance. In order to improve the training efficiency of the neural network, we use the same
weight factor for the edge information of each layer of the AEMS decoding network, which
greatly reduces the number of multipliers in the AEMS decoding network. We call it the shared
neural adaptive exponential min sum (SNAEMS) decoding network. The (SNAEMS) decoding
network is fast to train and has better decoding performance than the traditional AEMS decoder.

Tanner graph and AEMS decoding algorithm

Every LDPC code can be characterized by a sparse check matrix H, and every H check
matrix corresponding to a Tanner graph. The check matrix H contains a limited number of "1"
elements, and its associated Tanner graph is a bidirectional structure with three components:
check nodes (CNs), variable nodes (VNs), and edges linking CNs and VNs [9]. VNs are denoted
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by squares, while CNs are represented by circles. If H(i, j) equals "1", then VN; is connected to
CN;, otherwise it is not connected. A 3 row 6 column H check matrix and its corresponding
Tanner graph are shown in Figure 1. The soft decision decoding algorithm is an iterative
decoding method based on Tanner graph, in which messages are exchanged back and forth
between VNs and CNs during the iteration process. After several iterations, the obtained
message values are stabilized so that the best decision can be made accordingly. In the decoding
process, the information produced by the CNs and VNs updates is termed external information,
whereas the initial information obtained from the channel at the start of decoding is referred to
as a posteriori probability.
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Figure 1 — LDPC (6, 3) H check matrix and its corresponding Tanner graph
Pucynok 1 — LDPC (6, 3) xoutponsHoii Matpuisl H u coorBeTcTBytomuii eii rpad Tannepa

The AEMS decoding algorithm is a soft decision algorithm modified on the basis of the
MS decoding algorithm. The MS algorithm simplifies the complex calculation of the CNs
update formula of the BP algorithm by replacing all external information with the minimum
external information. On this basis, the AEMS algorithm additionally introduces secondary
(secondary minimum) external information values to optimize the CNs update operation of the
MS algorithm. The decoding performance of the MS algorithm is improved by mathematically
transforming the secondary minimum external information value and using it as an exponential
correction factor. Compared with existing MS algorithm optimization methods, the AEMS
algorithm maintains a low computational complexity and has very strong decoding performance
[8]. The specific decoding process is as follows and the detailed meaning of the algorithm
variables is shown in Table 1. This section briefly introduces the AEMS decoding algorithm.
For the detailed reasoning and proof process of the AEMS algorithm, please refer to [8].

Table 1 — Symbol explanation in the calculation process
Tabnuua 1 — MaTepnpeTanusi CHMBOJIOB IIPU pacueTax

Symbols Meaning
v; The i variable node
¢ The j check node
7}!1. (b) The external information passed from check node j to variable node i in the /th iteration,
b=0,1
qilj (b) The external information passed from variable node i to check node j in the /th
iterations, b= 0, 1
[40) The set of all check nodes connected to the ith variable node
V() The set of all variable nodes connected to the jth check node
C(i) The set of check nodes connected to the ith variable node except the jth check node
V() \i | The set of variable nodes connected to the jth check node except the ith variable node
P;(b) The posterior probability of receiving y; at the receiving end, corresponding to the code
word ¢; = b at the sending end, b=0, 1
ql(b) The posterior probability information of the ith variable node of the /th iteration, b= 0, 1
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Step 1: Calculate the received channel message of VNs for initialization as shown in (1).
P;(0)
L%(qis) = L(P) = In 7 (1)
Step 2: Calculate the CN-to-VN messages as described in (2). The AEMS algorithm not
only introduces the smallest external information value |L'~(q;7;)min1 |, but also additionally
introduces the second smallest external information value |Ll‘1(qir j)min2 |, using El,,; and

El,,, instead of them to simplify the expression. In order to use E1,,; and E1,,, to improve the
decoding performance, they are mathematically deformed to A = 2 — (El,,, — El,,1) as an
exponential correction factor. Whether A is substituted as an exponential correction factor
depends on whether E1,,,; < 1 or not.

{Ll(rji)AEMS = I sgn(EDElp % Ely, <1
Ll(rji)AEMs =1 sgn(EDEly, Ely,>1 "
Step 3: Calculate the CN-to-VN messages as shown in (3).

Pi(OII, rl (0)

1 _ Jj €ECON J'tL — 1
L (qif) - lnpiu)r[_, b L(P) + z:J"EC(i)\j L (rf'i)' 3)
jlecny i

2)

Step 4: Calculate all the messages obtained by the VNs as shown in (4).

Pi(0 Tjecw r}i(O)
Py [jec TH(D

LNg) =1In = L(P) + Yjecry L'(m0)- 4)

After obtaining the calculation result of L'(g;) , if the value of L!(q;) is larger than 0, its
corresponding estimate output codeword v ; is determined to be 0, otherwise v ; is determined
to be 1 as shown in (5). In order to decide v ;, then the whole codeword v obtained.

~ 1 if LMg) <0
vl_{o’ if L'g) >0

Step 5: Decoding decision: If vHT = 0 or the iteration number reaches its limit, the
decoding ceases; otherwise, the algorithm reverts to step 2.

)

Methods for organizing shared adaptive exponential min sum decoding neural network

In this section, we propose a shared neural adaptive exponential min sum (SNAEMS)
decoding network, which is founded on the AEMS decoding method for LDPC codes and the
principles of neural networks. We will explain how to unfold the AEMS decoding algorithm
into a neural network and how to design the decoding network and select network parameters.

Neural networks work by using a multi-layer cascade model with nonlinear processing
units that mimic the way neurons in the human brain work to make decisions, or recognize
phenomena, weigh pros and cons and draw conclusions [10, 11]. A neural network comprises
several layers of nodes, including an input layer, one or more hidden layers, and an output layer,
each containing either the same or varying quantities of neurons. Each neuron in a different
node layer is connected to a neuron in a neighboring node layer with associated weights. During
training, the neural network adjusts these weights to improve its performance on a given task.
Once the training is complete, the neural network model with suitable weights can be used to
make predictions or recognize patterns. The check matrix H of an LDPC code specifies the
quantity of CNs and VN, along with the edges linking them. The message iterations between
CNs and VNs correspond to the Tanner graph produced by the H matrix. The AEMS decoding
algorithm can be unfolded based on the Tanner graph and the iteration process, and the resulting
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decoder is a neural network [12]. The computation process of CNs to VNs messages and VNs
to CNs messages can be realized by hidden layers. In order to better distinguish the functions
performed by the hidden layer, the hidden layer can be divided into two categories: the CN
layer and the VN layer. Neurons in the CN layer compute messages from CNs to VNs and
neurons in the VN layer compute messages from VNs to CNs. The number of operator units in
each hidden layer of a neural network is proportional to the size of the Tanner graph as well
[13]. Thus, T iterations of the AEMS decoding algorithm could be articulated as a deep neural
network including 21,,,,4- layers, which includes [,,,, CN layers, L., VN layers, 1 input
layer and 1 output layer. Based on the above principle, combined with the Tanner graph
generated by the H matrix in Figure 1, the corresponding LDPC code decoding process can be
unfolded into a neural network decoding structure. Figure 2 shows the neural network decoding
structure with 3 complete iterations which has the same H matrix structure as Figure 1. Each
additional iteration means that 1 CN layer and 1 VN layer are added to the hidden layer. The
deep neural decoding network architecture for LDPC has 6 hidden layers, corresponding to 3
full iterations.

Hiddn Layer
Input Layer Output Layer

_,O
_,O
_.O
_.O
_,O

| CHLayer WM Layer CHN Layer WM Layer CH Layer WM Layer |

Figure 2 — The deep neural decoding network architecture for LDPC (6, 3)
Pucynok 2 — Apxutektypa ceT riryobokoro HelipoHHoro aexoauposanus 1t LDPC (6, 3)

According to the characteristics of the above neural network decoder, we expand the
traditional AEMS decoder into an AEMS neural network decoder. We give the same weight
factor to all layers except the input layer, so that the weight factors of all connecting edges are
the same in each iteration. The same weight factor in each layer will not change the structure
of the H matrix, which is more conducive to the AEMS neural network decoder to capture the
topological relationship between the nodes of the entire LDPC code during forward propagation
[4], and can greatly improve the training efficiency of the neural network decoder. The AEMS
neural network decoder with shared weights in each of the above layers is referred to as the
SNAEMS decoding network. Thus, the computation of CN to VN messages of the SNAEMS
decoding network in the CN layer is shown in (6).

{Ll(rji)SNAEMS =a'" [ sgn(EDELny*, Ely, <1
Ll(rji)SNAEMS =a' 1 sgn(EDElyy, Elp, > 1

The computation of VN to CN messages of the SNAEMS decoding network in the VN
layer is shown in (7).

(6)

LNqij) = LPD + B'Zjrcon L(ryms). (7
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The activation function can introduce nonlinearities to the neurons, allowing the neural
network to approximate any nonlinear function, otherwise each layer of the neural network's
output can only take up a linear transformation of the input function of the previous layer. For
the SNAEMS decoding network, since the output v; is 0 or 1 is a binary classification problem,
we use sigmoid as the activation function, the sigmoid function shown in (8) is a powerful tool
for dealing with binary classification problems, which will map any real value to the (0, 1)
interval, indicating the probability of belonging to a certain category.

og(x) =(1+e™ L (8)

Therefore, for the output layer, each output v; of the SNAEMS decoding network is
presented in (9). In (6), (7) and (9), where [ represents the number of iterations, while L4,
denotes the maximum number of iterations.

v; = 0(L(P) + Ljecqy (BmaxLimax (1;;))). )]

We employ the cross-entropy loss function for training the SNAEMS decoding network.

The cross-entropy loss quantifies the discrepancy between the neural network output v ; and
the transmitted codeword v ;, and its definition is shown in (10), where v ; and 7~7i are the
[ ¢ptransmitted information bit and SNAEMS decoding network estimate information bit. The
loss function represents the difference between the predicted value and the ideal value. The

smaller the difference, the closer the predicted value is to the ideal value, which indirectly
indicates that the weight parameters of the neural network model are more reasonable.

Lw,v ) =—=3X, vilog (v) + (1 —v)log (1 —vy). (10)

Simulation and comparison with others decoding algorithms

In this section, we compare the decoding performance of the SNAEMS decoding
network introduced above with AEMS, MS, and BP algorithms for different LDPC codes. We
use three short block channel codes recommended by Consultative Committee on Space Data
Systems (CCSDS) 231.1-O-1 for TC synchronization, which are suitable for telecontrol
commands and have good error correction capabilities and low decoding complexity [14]. In
the simulation, we utilize an additive white Gaussian noise (AWGN) channel and transmit the
coded bits using binary phase shift keying (BPSK) modulation. The signal-to-noise ratio (SNR)
is established between 1.0 dB and 5.0 dB, with the number of frames fixed at 10,000 and the
maximum iterations set at 10, after which the bit error ratio (BER) for various algorithms is
computed. We use (64, 128), (128, 256) and (256, 512) CCSDS LDPC codes and build the
SNAEMS decoding network with Python, because Python is currently the most powerful neural
network programming language and has rich library and tool support, we use TensorFlow
version 2.6.2.

Figures 3, 4 and 5 illustrate the BER performance of three CCSDS LDPC codes (64,
128), (128, 256) and (256, 512) under different decoding algorithms and different SNR
conditions. It can be clearly seen from Figures 3, 4 and 5 that the SNAEMS decoding network
has the best decoding performance among the three short block CCSDS LDPC codes, which is
stronger than the traditional AEMS decoding algorithm. At the same time, the decoding
performance of the traditional AEMS algorithm is better than the BP algorithm and the MS
algorithm. From Figure 3 alone, it can be seen when the SNR exceeds 3.0 dB, the BER of the
SNAEMS decoding network becomes inferior to that of the AEMS algorithm, and the
SNAEMS decoding network has a coding gain of 0.1dB compared with the AEMS algorithm.
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Figure 3 — BER of (64, 128) CCSDS with 10 iterations
Pucynok 3 — BER (64, 128) CCSDS ¢ 10 urepanusmu

As can be seen from Figure 4, when the SNR exceeds 2.0 dB, the decoding performance
of the SNAEMS decoding network starts to be stronger than the AEMS algorithm, and the
SNAEMS decoding network has a coding gain of 0.1 dB over the AEMS algorithm. In Figure
5, the decoding performance advantage of the SNAEMS decoding network is more obvious,
when the SNR exceeds 2.0 dB, the BER of the SNAEMS decoding network starts to be
significantly lower than that of the AEMS algorithm, and the SNAEMS decoding network and
the AEMS decoding algorithm finish decoding first when the SNR exceeds 3.0dB. At this time,
the other decoding algorithms have not finished decoding, and the SNAEMS decoding network
has a decoding gain of 0.15 dB over the AEMS algorithm. Combining Figures 3, 4 and 5, it can
be seen that with the increase of the CCSDS LDPC code length, the decoding ability of the
SNAEMS decoding network is gradually enhanced, and the decoding gain is gradually
increased compared to that of the AEMS algorithm. The above results prove that the AEMS
algorithm optimized by neural network has stronger decoding performance and its decoding
performance increases with the increase of code length.

- MS
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—— AEMS
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_2.5 -
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Figure 4 — BER of (128, 256) CCSDS with 10 iterations
Pucynok 4 — BER B (128, 256) CCSDS c¢ 10 ureparusmu
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Figure 5 — BER of (256, 512) CCSDS with 10 iterations
Pucynok 5 — BER B (256, 512) CCSDS ¢ 10 urepanusamu

In SNAEMS decoding network, the messages exchanged during each iteration between
CNs and VNs are multiplied by distinct correction factors a and [, thereby incorporating
weight parameters into the edges of the Tanner graph. These weights are obtained through deep
learning neural network training, and they partially compensate for the deleterious effects of
small cycles in the Tanner graph. Such "neural decoders" outperform traditional decoders
because they learn to use weights during decoding iterations to enhance performance. The
application of SNAEMS decoding algorithm is divided into two phases, in the training phase,
the SNAEMS decoding network will consume a lot of computational resources and time to
obtain suitable weights a and . In the usage phase, compared to having a traditional AEMS
decoder, the SNAEMS decoding network, requires more memory to store the corresponding
weights « and 8, and with the increase of code length and number of iterations, the stored
values will increase proportionally with the code length and the number of iterations, and the
SNAEMS decoding network performs one more multiplication operation for each iteration
operation. Therefore, the SNAEMS decoding network is suitable for communication scenarios
that require extremely high decoding accuracy and can provide better hardware resources.

Conclusion

This paper presents the SNAEMS LDPC code decoding network, which transforms the
AEMS decoding algorithm into a neural network architecture by adhering to the Tanner graph
of the LDPC code and the algorithm's iterative sequence. We reduce the computational
complexity of the SNAEMS decoding network by sharing the weight factors of each layer.
Simulation results show that the decoding performance of the SNAEMS decoding network with
appropriate weight factors obtained through training is superior to that of the conventional
AEMS decoder compared to the traditional AEMS decoder, and its decoding advantage
increases with the increase of code length. Neural network is a powerful tool to optimize the
LDPC decoding algorithm, but it inevitably increases the consumption of computational and
storage resources, while using neural network to improve the performance of the decoding
algorithm, attention should be paid to the balance between the performance enhancement and
the additional consumption of hardware resources.
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