УДК 004.9

DOI: 10.26102/2310-6018/2025.51.4.021

Разработка программного обеспечения для определения упругих характеристик многослойного композиционного материала

Л.А. Бохоева 1,3,4 , В.А. Титов 1,2 , М.С. Шатов 1 , К.В. Таргашин 1 , Мей Шунчи 4

¹Восточно-Сибирский государственный университет технологий и управления, Улан-Удэ, Российская Федерация

²Бурятский государственный университет имени Доржи Банзарова, Улан-Удэ, Российская Федерация

 3OOO «Zhejiang Taitan Co.», Синьчан, Китай 4 Уханьский текстильный университет, Ухань, Китай

Резюме. статье рассматривается разработка программного обеспечения автоматизированного расчета упругих характеристик многослойного композиционного материала (МКМ), применяемого в конструкциях, подверженных высокоскоростным ударным нагрузкам. Сформированный массив расчетных данных может быть использован для обучения и тестирования искусственных нейронных сетей, применяемых при прогнозировании баллистических характеристик МКМ, подвергающихся высокоскоростным ударным нагрузкам. Разработан алгоритм определения упругих характеристик пакета из композиционного материала, включая переход от определения объемной доли волокна и матрицы к свойствам однонаправленного композита и всего многослойного пакета в целом. Реализована оценка прочности по критерию Мизеса-Хилла и возможность пакетной обработки данных через Excel. Результатом программы является анализ укладки слоев из разных материалов, с разными толщинами, углами ориентации волокон в слое и с различным порядком расположения по толщине пакета отдельных слоев и будет использован для разработки комплексного подхода к проектированию композитных конструкций. Разработанное программное обеспечение может использоваться как самостоятельный инструмент для инженерного анализа, так и в составе комплексных систем численного моделирования. Полученные результаты позволяют значительно сократить время подготовки входных данных для численного моделирования и обеспечить более высокую точность начальных параметров.

Ключевые слова: упругие характеристики, композит, алгоритм определения упругих характеристик, база данных, укладка слоев.

Благодарности: Работа выполнена в рамках средств гранта РБ №505 на реализацию программы стратегического академического лидерства «Приоритет-2030».

Для цитирования: Бохоева Л.А., Титов В.А., Шатов М.С., Таргашин К.В., Мей Шунчи. Разработка программного обеспечения для определения упругих характеристик многослойного композиционного материала. *Моделирование, оптимизация и информационные технологии*. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1908 DOI: 10.26102/2310-6018/2025.51.4.021

Development of software for evaluating the elastic properties of multilayer composite materials

L.A. Bokhoeva^{1,3,4}, V.A. Titov^{1,2\subseteq}, M.S. Shatov¹, K.V. Targashin¹, Shunqi Mei⁴

¹East Siberia State University of Technology and Management, Ulan-Ude, the Russian Federation ²Dorzhi Banzarov Buryat State University, Ulan-Ude, the Russian Federation ³Zhejiang Taitan Co., Ltd, Xinchang, China ⁴Wuhan Textile University, Wuhan, China Abstract. This paper presents the development of software for the automated computation of the elastic properties of multilayer composite materials (MCM) intended for use in structures subjected to high-velocity impact loading. The generated array of calculated data can be used for training and testing artificial neural networks used in predicting the ballistic characteristics of MCM subjected to high-speed impact loads. An algorithm has been developed to determine the elastic characteristics of a composite laminate, encompassing the transition from fiber and matrix volume fractions to the properties of a unidirectional composite and subsequently to the full multilayered structure. The implementation includes strength assessment based on the Mises—Hill failure criterion, as well as support for batch data processing via Excel spreadsheets. The software provides analysis of stacking sequences comprising layers of various materials, thicknesses, fiber orientation angles, and through-thickness arrangements. The results will serve as a foundation for the development of an integrated approach to the design of composite structures. The developed software can be used as a standalone tool for engineering analysis or as part of integrated numerical modeling systems. The obtained results significantly reduce the time required to prepare input data for numerical simulations and ensure greater accuracy of initial parameters.

Keywords: elastic properties, composite, elastic properties determination algorithm, database, layer stacking.

Acknowledgements: This work was supported by Grant No. 505 within the framework of the "Priority 2030" strategic academic leadership program.

For citation: Bokhoeva L.A., Titov V.A., Shatov M.S., Targashin K.V., Shunqi Mei. Development of software for evaluating the elastic properties of multilayer composite materials. *Modeling, Optimization and Information Technology*. 2025;13(4). (In Russ.). URL: https://moitvivt.ru/ru/journal/pdf?id=1908 DOI: 10.26102/2310-6018/2025.51.4.021

Введение

Многослойные композиционные материалы (МКМ) широко применяются в авиационных, космических и транспортных конструкциях, испытывающих высокоскоростные ударные нагрузки, благодаря высокому отношению прочности к массе [1, 2]. Современные подходы к исследованию прочности МКМ базируются на экспериментальных и численных методах [3, 4]. Несмотря на высокую точность, эти методы требуют значительных затрат ресурсов и времени, что ограничивает их практическую применимость [5, 6].

В качестве альтернативы трудоемким испытаниям в ряде работ предложено применение искусственных нейронных сетей (ИНС) для прогнозирования баллистического предела по параметрам укладки и количеству слоев [7, 8]. ИНС демонстрируют высокую эффективность в задачах распознавания и прогнозирования свойств композитов [9, 10].

Однако существующие нейросетевые модели обучены на ограниченных выборках и не охватывают весь диапазон геометрических и материаловедческих параметров. В частности, влияние последовательности укладки слоев, углов ориентации волокон и свойств материалов учтено неполностью, что снижает точность результатов моделей.

В настоящей работе разработано программное обеспечение для автоматизированного расчета упругих характеристик МКМ с возможностью пакетной обработки данных и оценкой прочности по критерию Мизеса-Хилла. Итоговые расчеты формируют расширенную обучающую выборку для последующего применения в ИНС.

Цель работы – разработка программного средства для быстрой оценки упругих характеристик МКМ и генерации базы данных для обучения ИНС.

Задачи исследования:

- 1. Реализовать алгоритм расчета с учетом толщины, углов ориентации и порядка слоев.
 - 2. Обеспечить пакетную обработку входных данных через Excel.

- 3. Включить оценку прочности по критерию Мизеса-Хилла.
- 4. Создать графический интерфейс для ввода данных.
- 5. Верифицировать точность программы сравнением с расчетами в Ansys.

Предлагаемое решение направлено на повышение эффективности инженерного анализа и создание базы данных, применимой для обучения интеллектуальных систем проектирования.

Материалы и методы

Для анализа влияния последовательности укладки слоев из разных материалов в пластине необходимо определить упругие характеристики этих материалов в зависимости от угла укладки волокон, от количества слоев. Использование программных средств позволяет существенно ускорить сбор информации, систематизировать расчетные данные и снизить риск ошибок при вычислении прочностных характеристик многослойных композитов.

Элементы конструкций из многослойных композиционных материалов представляют собой многослойный пакет из набора слоев из разных материалов, с разными толщинами, углами ориентации волокон в слое и с различным порядком расположения по толщине пакета отдельных слоев [11]. Для расчета на прочность таких элементов конструкций необходимо определить жесткостные характеристики всего пакета. Коэффициенты жесткости пакета из композиционных материалов определяются свойствами компонентов материала и его внутренней структурой [12].

В данной работе рассмотрено определение характеристик композиционного материала по известным характеристикам армирующих элементов и связующего, характер взаимодействия элементов которого весьма сложен. Для решения этой задачи ограничимся рассмотрением следующей модели такого материала, представим однонаправленный материал в виде пластины, состоящей из чередования волокон и матрицы. Вначале определяем объемные доли волокна и матрицы. Тогда $f_{\rm B}+f_{\rm M}=1$, где $f_{\rm B}-$ относительное объемное содержание волокна, $f_{\rm M}-$ относительное объемное содержание матрицы. Для определения вклада каждого компонента сделали срезы образцов, которые представлены на Рисунке 1. Исследовались поверхности среза слоистых образцов, состоящих из 20 слоев стеклопластика с эпоксидным связующим между ними (Рисунок 2). Экспериментально определена объемная доля волокон $f_{\rm B}$ и матрицы $f_{\rm M}$ на растровом электронном микроскопе JSM-6510LV JEOL (Рисунок 3). Объемное содержание волокон составляет 70 %, диаметр d=6 мкм, матрицы 30 %.

Рисунок $1 - \Pi$ одготовка срезов образцов для растровой электронной микроскопии Figure 1 - Preparation of sample sections for scanning electron microscopy

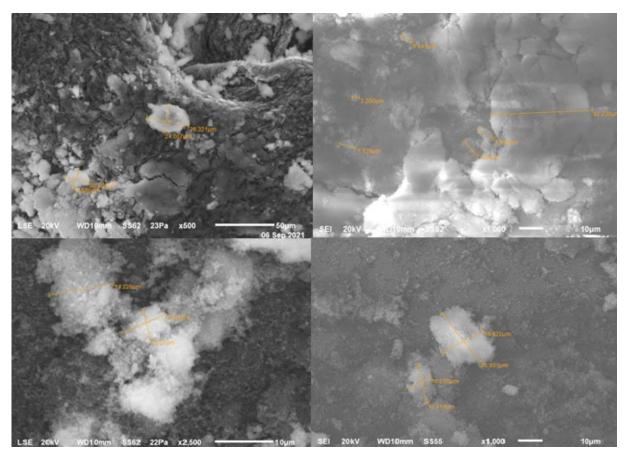


Рисунок 2 – Изображение поверхности среза слоистого композита Figure 2 – Surface image of a cross-section of the laminated composite

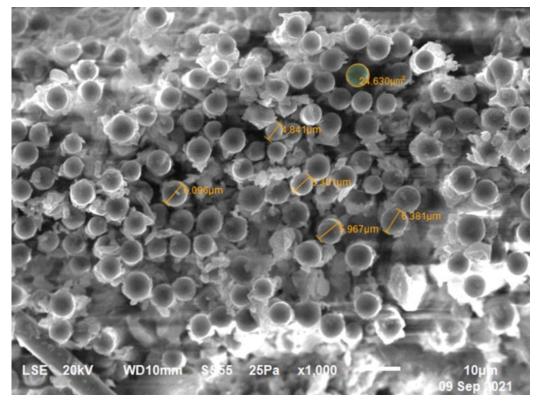


Рисунок 3 — Изображение поперечного разреза стеклопластика Figure 3 — Cross-sectional image of fiberglass composite

После определения объемной доли волокна и матрицы, устанавливаем связь между напряжениями в волокне (σ_{1B} , σ_{1B} , τ_{12B}) и в матрице (σ_{1M} , σ_{1M} , τ_{12M}); деформациями в волокне (ε_{1B} , ε_{1B} , γ_{12B}) и в матрице (ε_{1M} , ε_{1M} , γ_{12M}) однонаправленного слоя композита. Устанавливаем связь между средними напряжениями однонаправленного слоя (σ_{1} , σ_{2} , τ_{12}) и средними значениями деформаций однонаправленного слоя (ε_{1} , ε_{1} , γ_{12}). Выполняя условия равновесия и совместности деформаций, находим выражения постоянных однонаправленного композита через упругие постоянные и объемные доли компонентов:

$$E_{1} = f_{6}E_{6} + f_{M}E_{M},$$

$$E_{2} = \frac{E_{6}E_{M}E_{1}}{E_{1}[f_{6}E_{M} + f_{M}E_{6}] - f_{6}f_{M}(\mu_{M}E_{6} - \mu_{6}E_{M})^{2}},$$

$$G_{12} = \frac{G_{6}G_{M}}{f_{6}G_{M} + f_{M}G_{6}},$$

$$\mu_{12} = f_{6}\mu_{6} + f_{M}\mu_{M},$$

$$\mu_{21} = \frac{\mu_{12}E_{2}}{E_{1}},$$

$$(1)$$

где E_1 — модуль упругости вдоль направления армирования, E_2 — модуль упругости поперек направления армирования, G_{12} — модуль сдвига в плоскости слоя, $\mu_{12}\mu_{21}$ — коэффициенты поперечных деформаций; $E_{\mathfrak{g}}$ — модуль упругости волокна, $E_{\mathfrak{g}}$ — модуль упругости матрицы, $G_{\mathfrak{g}}$ — модуль сдвига волокна, $G_{\mathfrak{g}}$ — модуль сдвига матрица, $G_{\mathfrak{g}}$ — коэффициент поперечных деформаций волокна, $G_{\mathfrak{g}}$ — коэффициент поперечных деформаций матрицы. Полученные выражения отражают так называемое «правило смесей» — вклад каждого компонента пропорционален его объемной доли.

Определив упругие характеристики волокна и матрицы, можно определить упругие характеристики однонаправленного композита, используя выражения (1) или численные методы. В последние годы для решения задач теории армирования используют метод конечных элементов в программном комплексе Ansys Mechanical с использованием модулей Material Designer и JIMAGE. В качестве примера рассмотрены исходные данные для создания модели в Material Designer, которые представлены в Таблице 1. Заданы упругие характеристики волокна (стеклопластик) матрицы (эпоксидная смола).

Таблица 1 — Упругие характеристики волокна и матрицы Table 1 — Elastic properties of the fiber and matrix

Упругие характеристики стекловолокна	Упругие характеристики эпоксидной матрицы
$E_{B} = 7,3 \cdot 104 \text{ M}\Pi a$	$E_{M} = 3,78 \cdot 103 \text{ M}\Pi a$
$G_{\scriptscriptstyle B} = 2,9 \cdot 104 \ \mathrm{M}\Pi \mathrm{a}$	$G_{M} = 1,4 \cdot 103 \text{ M}\Pi a$
$\mu_{\scriptscriptstyle B} = 0,22 \ M\Pi a$	$\mu_{\scriptscriptstyle M}=0.35$

На Рисунке 4 представлена модель среза образца композита, полученная в модуле JIMAGE, что соответствует реальному образцу поперечного разреза композита при 1000-кратном увеличении (Рисунок 3).

Полученные упругие характеристики однонаправленного композита представлены в Таблице 2. Результаты показали хорошую сходимость результатов, полученных численным методом и с помощью аналитических выражений (1)—(5).

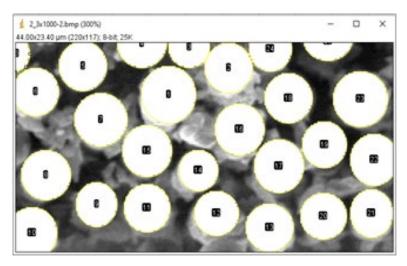


Рисунок 4 – Изображение среза образца композита в модуле JIMAGE Figure 4 – Image of a composite specimen cross-section in the JIMAGE module

Таблица 2 – Упругие характеристики однонаправленного композита Table 2 – Elastic properties of the unidirectional composite

Упругие характеристики однонаправленного композита (стеклопластик), полученные по соотношениям (1)	Упругие характеристики однонаправленного композита (стеклопластик), полученные в программном комплексе Ansys Mechanical
E1 = 5,223·104 MΠa	$E1 = 5,225 \cdot 104$ MΠa
E2 = 1,124·104 MΠa	$E2 = 1,759 \cdot 104 MПа$
G12 = 4,207·103 МПа	$G12 = 4,459 \cdot 104$ MΠa
$\mu 21 = 0.25$	$\mu 21 = 0.253$

Определим систему координат: локальная система координат $(1,2)^m$ однонаправленного слоя, глобальная система координат (x,y), где m — номер однонаправленного слоя в пакете многослойного композиционного материала. Далее рассмотрим преобразование упругих характеристик однонаправленного композиционного материала при повороте осей, при переходе от локальных осей к произвольным осям x и y, полученным вращением осей 1 и 2 вокруг оси на угол ϕ . Соотношения связи между напряжением и деформацией в однонаправленном m-м слое при плоском напряженном состоянии можно записать в виде:

$$\sigma^m = C^m \varepsilon^m$$
,

где \mathcal{C}^m — матрица коэффициентов упругости имеет в общем виде структуру:

$$C^{m} = \begin{bmatrix} C_{11}^{m} & C_{12}^{m} & C_{13}^{m} \\ C_{21}^{m} & C_{22}^{m} & C_{23}^{m} \\ C_{31}^{m} & C_{32}^{m} & C_{33}^{m} \end{bmatrix},$$

где $C_{j,s}^m$ (j=1,2,3; s=1,2,3) — упругие характеристики m-го слоя, зависящие от модулей упругости, модуля сдвига, коэффициентов Пуассона и угла ориентации волокон однонаправленного слоя при повороте осей, ϕ — угол ориентации волокон слоя. Выражения упругих характеристик m-го слоя получены на основании работ [13, 14]:

$$C_{11}^{m} = \lambda (E_1 \cos^4 \phi + E_2 \sin^4 \phi + \frac{1}{2} \mu_{21} E_1 \sin^2 2 \phi) + G_{12} \sin^2 2 \phi,$$

$$C_{22}^{m} = \lambda(E_{1}\sin^{4}\phi + E_{2}\cos^{4}\phi + \frac{1}{2}\mu_{21}E_{1}\sin^{2}2\phi) + G_{12}\sin^{2}2\phi,$$

$$C_{12}^{m} = C_{21}^{m} = \lambda[(E_{1} + E_{2})\sin^{2}\phi\cos^{2}\phi + \mu_{21}E_{1}(\cos^{4}\phi + \sin^{4}\phi)] - G_{12}\sin^{2}2\phi,$$

$$C_{13}^{m} = C_{31}^{m} = \left[\frac{\lambda}{2}(-E_{2}\sin^{2}\phi + E_{1}\cos^{2}\phi - \mu_{21}E_{1}\cos2\phi) - G_{12}\cos2\phi\right]\sin2\phi,$$

$$C_{23}^{m} = C_{32}^{m} = \left[\frac{\lambda}{2}(-E_{2}\cos^{2}\phi + E_{1}\sin^{2}\phi + \mu_{21}E_{1}\cos2\phi) + G_{12}\cos2\phi\right]\sin2\phi,$$

$$C_{33}^{m} = \frac{\lambda\sin^{2}2\phi}{4}(E_{1} + E_{2} - 2\mu_{12}E_{1}) + G_{12}\cos^{2}2\phi,$$

$$\lambda = \frac{1}{1 - \mu_{12}\mu_{21}},$$

$$E_{1}\mu_{21} = E_{2}\mu_{12}.$$

Пакет из композиционных материалов состоит из разноориентированных слоев однонаправленного композита. Определяем упругие характеристики пакета многослойного композита по известным характеристикам жесткости (2) входящих в него n слоев. Обозначим δ — толщина пакета слоев из n слоев, δ_m — толщина n-го слоя. Приблизительно, но с достаточной для инженерных расчетов точностью, упругие характеристики многослойного композиционного материала из разноориентированных слоев можно определить по формулам:

$$E_{x} = A_{11} - \frac{A_{12}^{2}}{A_{22}},$$

$$E_{y} = A_{22} - \frac{A_{12}^{2}}{A_{11}},$$

$$G_{xy} = A_{33},$$

$$\mu_{xy} = \frac{A_{12}}{A_{22}},$$

$$\mu_{yx} = \mu_{xy} \frac{E_{y}}{E_{x}},$$
(2)

где

$$A_{11} = \frac{1}{\delta} \sum_{m=1}^{n} \delta_m C_{11}^m,$$

$$A_{12} = \frac{1}{\delta} \sum_{m=1}^{n} \delta_m C_{12}^m,$$

$$A_{22} = \frac{1}{\delta} \sum_{m=1}^{n} \delta_m C_{22}^m,$$

$$A_{33} = \frac{1}{\delta} \sum_{m=1}^{n} \delta_m C_{33}^m.$$

Для разработки программы определения жесткостных характеристик многослойного композиционного материала разработан алгоритм¹. В расчетах используются библиотеки math – для выполнения математических операций, и pandas – для работы с табличными структурами данных [15]. Дополнительно задействованы модули орепрух1 (обработка Excel-файлов) и matplotlib (построение графиков).

¹ Титов В.А., Бохоева Л.А., Балданов А.Б., Иванов Р.П., Базарон С.А. Правообладатели: Федеральное государственное бюджетное образовательное учреждение высшего образования «Восточно-Сибирский государственный университет технологий и управления». Определения жесткостных характеристик многослойного композиционного материала. Свидетельство о государственной регистрации программы для ЭВМ № 2024661132 от 15.05.2024 г. Заявка № 2024619405 от 26.04.2024 г. Зарегистрировано в Федеральной службе по интеллектуальной собственности (Роспатент).

Программа обеспечивает возможность как индивидуального расчета параметров композита, так и пакетной обработки массивов данных.

Алгоритм расчета жесткостных характеристик многослойного композиционного материала реализует поэтапную обработку исходных данных, начиная с ввода модулей упругости, коэффициентов Пуассона, параметров укладки и количества слоев. На основе введенных значений вычисляется коэффициент Пуассона μ_{12} . Далее программа последовательно рассчитывает жесткостные характеристики каждого слоя с учетом ориентации армирующих волокон, формируя матрицу C^m . Полученные значения взвешиваются по количеству слоев и рассчитываются обобщенные жесткости однонаправленного слоя A_{11} ... A_{33} . На их основе определяются модули упругости пакета при повороте осей, модуль сдвига и коэффициенты Пуассона. Полученные значения выводятся в итоговом блоке программы. Полная структура алгоритма представлена на Рисунке 5.

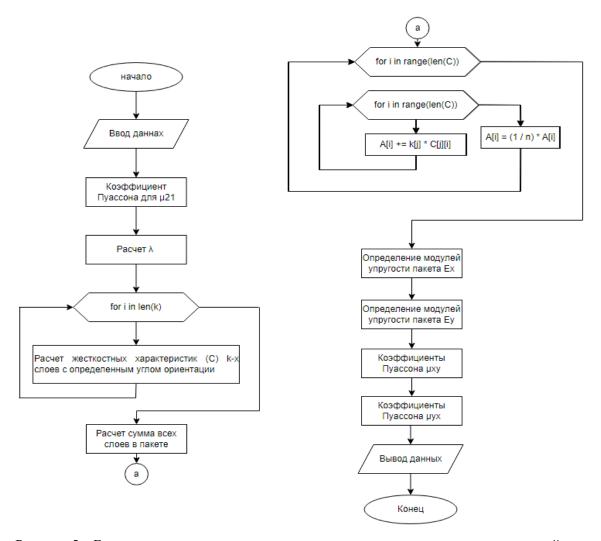


Рисунок 5 — Блок-схема алгоритм определения жесткостных характеристик многослойного композиционного материала

Figure 5 – Block diagram of the algorithm for determining the stiffness characteristics of a multilayer composite material

Графический интерфейс программы реализован с использованием библиотеки Tkinter. Окно программы разбито на две основные области: ввод данных и отображение результатов (Рисунок 6).

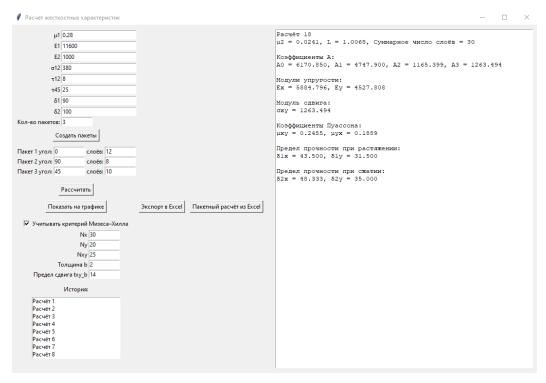


Рисунок 6 – Интерфейс программы с результатами расчета Figure 6 – Program interface displaying calculation results

Слева пользователь вводит параметры слоев, конфигурацию укладки (углы и количество), а также, при необходимости, включает дополнительные режимы расчета. Ниже располагается история с возможностью пролистывания истории и просмотра прошлых вычислений. Справа располагается окно вывода результатов.

Дополнительно в программе реализован расчет предела прочности многослойного композиционного материала, при котором происходит разрушение материала. Входными параметрами для расчета являются внешние усилия N_x, N_y, N_{xy} при растяжении и сжатии в системе координат x и y, общая толщина пакета δ . Напряжения по толщине пакета можно рассчитать по формулам:

$$\sigma_x = \frac{N_x}{\delta}, \ \sigma_y = \frac{N_y}{\delta}, \ \tau_{xy} = \frac{N_{xy}}{\delta}.$$

В проектировочных расчетах пределы прочности при растяжении $(\sigma_{b_x}, \sigma_{b_y})$ определяются по формулам через значения предельных напряжений однонаправленного слоя $(\sigma_{b_1}, \sigma_{b_2})$:

$$\sigma_{b_{x}} = \frac{\sum_{m=1}^{n} \sigma_{b_{1}} \cos^{4} \phi_{m}}{n}, \ \sigma_{b_{y}} = \frac{\sum_{m=1}^{n} \sigma_{b_{2}} \sin^{4} \phi_{m}}{n}.$$

Аналогично, пределы прочности при сжатии определены через значения предельных напряжений однонаправленного слоя:

$$\sigma_{-b_x} = \frac{\sum_{m=1}^{n} \sigma_{-b_1} \cos^4 \phi_m}{n}, \ \sigma_{-b_y} = \frac{\sum_{m=1}^{n} \sigma_{-b_2} \sin^4 \phi_m}{n},$$

где m — номер однонаправленного слоя, ϕ_m — угол поворота однонаправленного m-го слоя в пакете из n слоев. Предел прочности при сдвиге (τ_{x_y}) многослойного композита определяется на основании экспериментальных данных или по специальным расчетам с учетом количества слоев, уложенных под разными углами ϕ_m .

Для оценки прочности многослойного композиционного материала в плоском напряженном состоянии в программе реализован критерий разрушения Мизеса-Хилла, который применяют к слоистым композиционным материалам [16]. Этот критерий позволяет определить предельное состояние при совместном действии нормальных и касательных напряжений. Критерий прочности Хилла-Мизеса является квадратичным критерием, построенным на четвертой теории прочности и основанным на напряжении, с помощью которого можно идентифицировать разрушение, но невозможно различить, произошло разрушение матрицы или волокна. Критерий разрушения Мизеса-Хилла для прочности анизотропных материалов, полученный на основе критерия пластичности в двумерной постановке, можно представить:

$$\frac{\sigma_x^2}{\sigma_{b_x}^2} - \frac{\sigma_x \sigma_y}{\sigma_{b_x} \sigma_{b_y}} + \frac{\sigma_x^2}{\sigma_{b_y}^2} + \frac{\tau_{xy}^2}{\tau_{b_{xy}}^2} \le 1.$$

Если значение выражения больше 1 происходит разрушение материала.

Дополнительно реализован интерфейс управления количеством пакетов: при вводе числа пакетов формируется таблица, в которую пользователь вносит угол и количество слоев для каждого из них. Логика взаимодействия пользователя с интерфейсом и структура функциональных элементов представлены на Рисунке 7.

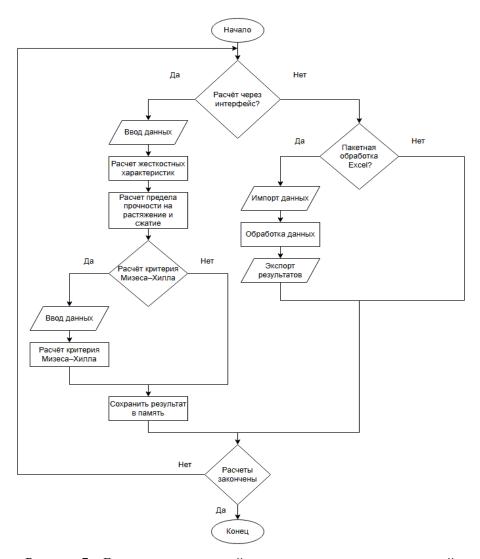


Рисунок 7 — Блок-схема взаимодействия пользователя с программой Figure 7 — Block diagram of user interaction with the software

Программа поддерживает следующие режимы:

- ручной расчет: пользователь задает параметры для конкретного случая, результат сохраняется в истории и может быть визуализирован;
- пакетная обработка: загружается Excel-файл с набором входных данных, программа обрабатывает каждую строку, результаты записываются обратно в файл;
- экспорт истории: все произведенные расчеты можно выгрузить в Excel для последующего анализа;
- визуализация графиков: реализована на отдельной панели с возможностью выбора расчета из истории;
- расчет критерия разрушения по модели Мизеса-Хилла, позволяющий оценить возможность разрушения конструкции при заданных усилиях.

Результаты и обсуждение

В процессе расчета импортированного Excel-файла программа автоматически формирует таблицу с выходными данными, в которой содержатся значения жесткостных характеристик, пределов прочности при растяжении и сжатии, а также результат проверки по критерию разрушения Мизеса-Хилла. Эти данные сохраняются в табличной форме на отдельном листе Excel-файла с входными параметрами (на листе InputData) и с сохраненными результатами на лист OutputData (Рисунок 8). Полученные выходные данные представляют собой сформированную обучающую.

⊿ A		В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
μ1	E	1	E2	σ12	τ12	τ45	δ1	δ2	Углы	Слои	Nx	Ny	Nxy	b	txy_b
2 0,:	296 14	46405	8177	417	92	71	1161	792	0;60;120	6;1;3	1969	1421	58	2,42	83
0,:	204 12	25231	10988	411	99	60	1108	756	0;90;20	6;1;3	1080	1233	93	2,73	87
1 0,:	241 14	42876	9881	569	91	76	1335	735	0;60;120	3;3;3	1087	1016	52	2,81	86
0,:	233 13	33848	10196	458	90	74	1255	830	0;45;90	3;3;4	1749	1352	125	3,09	86
5 0	,31 13	31149	8511	597	72	74	1202	826	0;45;90	5;3;9	1497	1573	120	3,32	97
7 0,	302 13	29105	11985	474	89	51	1329	723	0;60;120	3;3;4	1835	1547	79	2,86	94
0,:	334 13	25094	11777	420	90	57	1234	893	0;90;45	6;1;3	1070	1506	125	2,36	84
0,:	213 12	27055	9550	459	75	76	1073	712	0;90;180	6;1;3	1778	1005	78	2,71	93
0 0,3	263 14	45018	8322	425	87	51	1135	728	0;45;90	4;2;4	1545	1530	50	2,61	85
1 0,:	204 13	31029	10261	497	93	75	1071	739	0;90;34	6;1;3	1784	1119	59	2,14	88
2 0,:	233 12	23349	9200	471	77	60	1126	860	15;30;45	5;3;9	1128	1208	140	2,99	94
3 0,:	276 12	23039	11397	516	75	62	1381	740	30;60;32	2;2;2	1131	1487	130	2,53	87
4 0,:	204 13	32449	10574	562	84	58	1287	874	15;30;45	4;2;4	1675	1465	57	2,62	82
5 0	,23 12	23169	10533	493	82	52	1275	808	0;45;90	4;2;4	1486	1182	79	3,3	94
6 0,:	297 13	31763	11626	441	78	56	1134	852	0;90;50	5;3;9	1969	1248	58	2,08	97
7 0,:	282 14	47770	11529	494	99	79	1382	716	0;60;120	5;3;10	1562	1329	54	2,98	83
	233 13	31270	9481	490	90	80	1299	798	30;60;80	5;4;9	1169	1262	92	2,97	81
9 0,:	288 13	39782	10364	453	92	68	1219	797	0;60;120	4;2;4	1271	923	59	2,09	100
0 0,	321 13	28667	8787	571	87	78	1298	852	0;45;90	3;3;3	1540	1053	115	3,09	97
1 0,:	201 14	46447	10885	468	77	72	1204	819	0;90;66	6;1;3	1893	1030	80	3,2	80

	Α	В	С	D	Е	F	G	Н	1	J	К
1	Ex	Ey	σху	μху	μух	δ1x	δ1γ	δ2x	δ2y	Hill Index	Разрушение
2	89521,0499	36769,2639	8756,26395	0,3509793	0,14415884	725,625	261,225	495	178,2	3,872951973	Да
3	104389,673	22098,6025	2052,9273	0,28017238	0,05931064	923,981668	115,348495	630,442366	78,703486	13,99143166	Да
4	51073,5522	51073,5522	14214,9262	0,35413258	0,35413258	500,625	500,625	275,625	275,625	0,606914992	Нет
5	53379,7514	65266,2963	10810,9327	0,18684561	0,22845219	470,625	596,125	311,25	394,25	1,323711832	Да
6	48970,4075	77472,7539	6457,52278	0,10789174	0,17068819	406,558824	689,382353	279,382353	473,735294	1,079001456	Да
7	42849,1743	47838,1556	13513,6218	0,37292984	0,41635051	456,84375	523,29375	248,53125	284,68125	1,675538844	Да
8	82126,1324	28773,0404	10071,9903	0,44129802	0,15460957	832,95	215,95	602,775	156,275	7,817521949	Да
9	115504,127	21337,3777	459	0,09549776	0,01764155	965,7	107,3	640,8	71,2	10,15446999	Да
10	68260,9583	68260,9583	7817,81331	0,13782474	0,13782474	510,75	510,75	327,6	327,6	1,381137581	Да
11	94540,5652	23852,2458	7992,96486	0,43299174	0,10924226	794,377565	138,516466	548,127937	95,5776549	11,48836663	Да
12	35319,2354	13237,6324	20957,2631	1,08129932	0,40527046	549,094795	162,934617	419,379683	124,443846	5,164977	Да
13	29773,3893	20272,8101	19236,3704	0,78700462	0,53587434	525,805572	324,00872	281,749546	173,617996	2,81995781	Да
14	49951,5217	14444,2471	18897,8286	1,09944319	0,31792083	721,627439	147,097561	490,056241	99,8937594	11,93737937	Да
15	59505,1384	59505,1384	6866,51977	0,14489855	0,14489855	573,75	573,75	363,6	363,6	0,580601205	Нет
16	48175,4531	45515,0825	17338,8307	0,39253471	0,37085795	436,018264	406,856694	327,590442	305,68069	3,769318916	Да
17	45190,4865	54772,0057	15841,7102	0,36480943	0,44215819	446,270833	561,4375	231,208333	290,875	1,125195196	Да
18	25592,9754	73283,073	10135,3408	0,20272937	0,58049644	221,600971	795,847995	136,133622	488,904311	2,637792763	Да
19	59023,0461	47365,7379	12489,3029	0,36136017	0,28998997	533,3125	411,4125	348,6875	268,9875	1,308200539	Да
20	55119,2078	55119,2078	11442,9064	0,2350363	0,2350363	540,833333	540,833333	355	355	0,812767801	Нет
21	91598,5746	51508,7739	3899,82572	0,16203763	0,09111888	732,285552	371,975527	498,124475	253,029865	0,799985971	Нет

Рисунок 8 — Результаты расчетов в Excel Figure 8 — Calculation results in Excel

Были выполнены расчеты для нескольких комбинаций укладки. Программа показала высокую стабильность, а точность по сравнению с теоретическими значениями осталась в пределах 0.085%.

Сравнение аналитических расчетов и результатов, полученных в ANSYS Mechanical, показывает высокую точность разработанного алгоритма. Внедрение критерия разрушения Мизеса-Хилла дает большее понимание пределов прочности за счет оценки состояния композита. Отличительной особенностью программного обеспечения является поддержка пакетной обработки и автоматической генерации обучающих выборок, что делает его удобным для интеграции с ИНС.

Заключение

Разработано программное обеспечение для автоматизированного расчета упругих характеристик многослойного композиционного материала, необходимое для обучения и тестирования ИНС, способных прогнозировать баллистические характеристики материалов. Разработан алгоритм определения упругие характеристики пакета из композиционного материала, включая переход от определения объемной доли волокна и матрицы к свойствам однонаправленного композита и всего многослойного пакета в целом. Реализована оценка прочности по критерию Мизеса-Хилла и возможность пакетной обработки данных через Excel. Новые функции позволили расширить область применения: от оценки механических свойств до анализа предельного состояния.

СПИСОК ИСТОЧНИКОВ / REFERENCES

- 1. Olivenko N.A., Kudryavtsev O.A., Ignatova A.V. Simplified Approach to Verification of Numerical Models for Deformation and Fracture Analysis of Structural Composite Subjected to High-Velocity Impact. *Defect and Diffusion Forum*. 2022;419:117–123. https://doi.org/10.4028/p-3ivuh1
- 2. Arias Á., López-Puente J., Loya J.A., Varas D., Zaera R. Analysis of High-Speed Impact Problems in the Aircraft Industry. In: *Constitutive Relations under Impact Loadings: Experiments, Theoretical and Numerical Aspects.* Vienna: Springer; 2014. P. 137–207. https://doi.org/10.1007/978-3-7091-1768-2 4
- 3. Pernas-Sánchez J., Pedroche D.A., Varas D., López-Puente J., Zaera R. Numerical Modeling of Ice Behavior Under High Velocity Impacts. *International Journal of Solids and Structures*. 2012;49(14):1919–1927. https://doi.org/10.1016/j.ijsolstr.2012.03.038
- 4. Olsson R., Juntikka R., Asp L.E. High Velocity Hail Impact on Composite Laminates Modelling and Testing. In: *Dynamic Failure of Composite and Sandwich Structures*. Dordrecht: Springer; 2013. P. 393–426. https://doi.org/10.1007/978-94-007-5329-7 9
- 5. Meo M., Morris A.J., Vignjevic R., Marengo G. Numerical Simulations of Low-Velocity Impact on an Aircraft Sandwich Panel. *Composite Structures*. 2003;62(3–4):353–360. https://doi.org/10.1016/j.compstruct.2003.09.035
- 6. Anghileri M., Castelletti L.-M.L., Invernizzi F., Mascheroni M. A Survey of Numerical Models for Hail Impact Analysis Using Explicit Finite Element Codes. *International Journal of Impact Engineering*. 2005;31(8):929–944. https://doi.org/10.1016/j.ijimpeng.2004.06.009
- 7. Artero-Guerrero J.A., Pernas-Sánchez J., Martín-Montal J., Varas D., López-Puente J. The Influence of Laminate Stacking Sequence on Ballistic Limit Using a Combined Experimental/FEM/Artificial Neural Networks (ANN) Methodology. *Composite Structures*. 2018;183:299–308. https://doi.org/10.1016/j.compstruct.2017.03.068
- 8. Qiu Ch., Han Yu., Shanmugam L., et al. A Deep Learning-Based Composite Design Strategy for Efficient Selection of Material and Layup Sequences from a Given Database.

- Composites Science and Technology. 2022;230(2). https://doi.org/10.1016/j.compsci tech.2021.109154
- 9. Fernández-Fdz D., López-Puente J., Zaera R. Prediction of the Behaviour of CFRPs Against High-Velocity Impact of Solids Employing an Artificial Neural Network Methodology. *Composites Part A: Applied Science and Manufacturing*. 2008;39(6):989–996. https://doi.org/10.1016/j.compositesa.2008.03.002
- Sorour Sh.S., Saleh Ch.A., Shazly M. A Review on Machine Learning Implementation for Predicting and Optimizing the Mechanical Behaviour of Laminated Fiber-Reinforced Polymer Composites. *Heliyon*. 2024;10(13). https://doi.org/10.1016/j.heliyon.2024.e33681
- 11. Бохоева Л.А., Балданов А.Б., Рогов В.Е. Особенности межслойного разрушения при ударном нагружении композиционных материалов с переменным углом укладки слоев. *Diagnostics, Resource and Mechanics of Materials and Structures*. 2024;(2):50–60. https://doi.org/10.17804/2410-9908.2024.2.050-060
 Bokhoeva L.A., Baldanov A.B., Rogov V.E. The Features of Interlayer Fracture of Composite Materials with a Variable Layup Angle Under Impact Loading. *Diagnostics, Resource and Mechanics of Materials and Structures*. 2024;(2):50–60. (In Russ.). https://doi.org/10.17804/2410-9908.2024.2.050-060
- 12. Riccio A., Caputo F., Di Felice G., Saputo S., Toscano C., Lopresto V. A Joint Numerical-Experimental Study on Impact Induced Intra-Laminar and Inter-Laminar Damage in Laminated Composites. *Applied Composite Materials*. 2016;23(3):219–237. https://doi.org/10.1007/s10443-015-9457-0
- 13. Бохоева Л.А., Балданов А.Б., Рогов В.Е. Математическое моделирование потери устойчивости локальных расслоений, полученных в результате скоростного удара. *Инженерный журнал: наука и инновации*. 2022;(12). https://doi.org/10.18698/2308-6033-2022-12-2233
 Bokhoeva L.A., Baldanov A.B., Rogov V.E. Mathematical Modeling of Loss of Stability
 - of Local Delaminations Caused by High-Speed Impact. *Engineering Journal: Science and Innovation*. 2022;(12). (In Russ.). https://doi.org/10.18698/2308-6033-2022-12-2233
- 14. Бохоева Л.А., Дамдинов Т.А. Определение критических нагрузок энергетическим методом с учетом деформаций сдвига. Вестник Казанского государственного технического университета им. А.Н. Туполева. 2006;(1):3–7. Вокноуеva L.A., Damdinov T.A. On Determination of Critical Loads by Shear Strain-Energy Method. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva. 2006;(1):3–7. (In Russ.).
- 15. Dos Santos Souza L.F., Vandepitte D., Tita V., De Medeiros R. Dynamic Response of Laminated Composites Using Design of Experiments: An Experimental and Numerical Study. *Mechanical Systems and Signal Processing*. 2019;115:82–101. https://doi.org/10.1016/j.ymssp.2018.05.022
- 16. Hashin Z. Failure Criteria for Unidirectional Fiber Composites. *Journal of Applied Mechanics*. 1980;47(2):329–334. https://doi.org/10.1115/1.3153664

ИНФОРМАЦИЯ ОБ ABTOPAX / INFORMATION ABOUT THE AUTHORS

Бохоева Любовь Александровна, доктор технических наук, профессор, профессор кафедры информационных технологий и прикладной механики, Восточно-Сибирский государственный университет технологий и управления, Улан-Удэ, Российская Федерация.

Lyubov A. Bokhoeva, Doctor of Engineering Sciences, Professor, Professor at the Department of Information Technology and Applied Mechanics, East Siberia State University of Technology and Management, Ulan-Ude, the Russian Federation.

e-mail: <u>bohoeva@yandex.ru</u> ORCID: <u>0000-0001-6986-4307</u>

2025;13(4) https://moitvivt.ru

Титов Вадим Андреевич, аспирант кафедры системного анализа и компьютерного моделирования, Бурятский государственный университет имени Доржи Банзарова, Улан-Удэ, Российская Федерация.

Vadim A. Titov, Postgraduate at the Department of Systems Analysis and Computer Modeling, Dorzhi Banzarov Buryat State University, Ulan-Ude, the Russian Federation.

e-mail: i.titov.sci@yandex.ru

Шатов Максим Сергеевич, аспирант кафедры информационных технологий и прикладной механики, Восточно-Сибирский государственный университет технологий и управления, Улан-Удэ, Российская Федерация. *e-mail*: <u>maksim.shatov.97@mail.ru</u>

Maksim S. Shatov, Postgraduate at the Department of Information Technology and Applied Mechanics, East Siberia State University of Technology and Management, Ulan-Ude, the Russian Federation.

Таргашин Кирилл Владимирович, студент кафедры информационных технологий и прикладной механики, Восточно-Сибирский государственный университет технологий и управления, Улан-Удэ, Российская Федерация. *e-mail*: maksim.shatov.97@mail.ru

Kirill V. Targashin, Student at the Department of Information Technology and Applied Mechanics, East Siberia State University of Technology and Management, Ulan-Ude, the Russian Federation.

Мэй Шунчи, доктор технических наук, профессор, декан факультета машиностроения и автоматизации, Уханьский текстильный университет, Ухань, Китай.

Shunqi Mei, Doctor of Engineering Sciences, Professor, Dean of the Faculty of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan, China.

e-mail: <u>rmeishunqi@vip.sina.com</u> ORCID: <u>0000-0002-9466-2931</u>

Статья поступила в редакцию 13.05.2025; одобрена после рецензирования 08.10.2025; принята к публикации 17.10.2025.

The article was submitted 13.05.2025; approved after reviewing 08.10.2025; accepted for publication 17.10.2025.