
Моделирование, оптимизация и информационные технологии /  
Modeling, Optimization and Information Technology   

2026;14(1) 
https://moitvivt.ru 

 

© Лимановская О.В., Гаврилов И.В., Мещанинов В.Н., Манакова Н.С., Решетников Е.Д., 2026 1 | 17 

УДК 51-76 
DOI: 10.26102/2310-6018/2026.52.1.006 

Алгоритм поиска точного контура ядер клеток на снимках 
клеток буккального эпителия  

О.В. Лимановская1, И.В. Гаврилов1,2, В.Н. Мещанинов1,2, Н.С. Манакова1, 
Е.Д. Решетников1 

 1Центр специализированных видов медицинской помощи «Институт медицинских 
клеточных технологий», Екатеринбург, Российская Федерация 

2Уральский государственный медицинский университет Министерства 
здравоохранения Российской Федерации, Екатеринбург, Российская Федерация 

Резюме. В статье разработан алгоритм поиска точного контура ядер клеток на снимках клеток 
буккального эпителия, окрашенных по Гимзе. Снимки клеток получены на микроскопе Carl Zeiss 
Primo Star 415500-011с 1000-кратным увеличением. Алгоритм разработан на языке Python 3.11 c 
использованием библиотеки компьютерного зрения OpenCV. Алгоритм состоит из двух этапов. 
На первом этапе идет поиск границ ядра клетки, выделение ядра в прямоугольную область и 
сохранение ее в отдельный файл формата jpg. На втором этапе в сохраненном файле с ядром 
клетки проводится уточнение границ ядра клетки с наложением маски на изображение ядра 
клетки по уточненным контурам. Изображения ядер клеток с уточненными контурами 
сохраняются в отдельных файлах в формате jpg. Полученные изображения ядер клеток с 
наложенной маской могут быть использованы для исследования морфологии ядра клетки, в том 
числе и с целью поиска маркеров скорости старения. Алгоритм может быть использован не 
только для получения файлов с изображением ядра клетки, но и может быть встроен в алгоритм 
анализа морфологии ядра клетки, использован для поиска новых маркеров, например, процесса 
возрастной инволюции клетки и организма в целом в геронтологических исследованиях.  
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Abstract. The article develops an algorithm for searching for the exact contour of cell nuclei in images 
of buccal epithelial cells stained by Giemse. The images of the cells were obtained using a Carl Zeiss 
Primo Star 415500-011 microscope with 1000x magnification. The algorithm is developed in Python 
3.11 using the OpenCV computer vision library. The algorithm consists of two stages. The first stage 
involves searching for the boundaries of the cell nucleus, selecting the nucleus into a rectangular area 
and saving it to a separate jpg file. At the second stage, the boundaries of the cell nucleus are clarified 
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in the saved file with the cell nucleus and a mask is applied to the image of the cell nucleus along the 
specified contours. Images of cell nuclei with refined contours are saved in separate jpg files. The 
obtained images of cell nuclei with a mask applied can be used to study the morphology of the cell 
nucleus, including in order to search for markers of the rate of aging. The algorithm can be used not 
only to obtain files with images of the cell nucleus, but can also be integrated into an algorithm for 
analyzing the morphology of the cell nucleus, used to search for new markers, for example, the process 
of age-related cell involution and the body as a whole in gerontological research. 

Keywords: computer vision, OpenCV, search for cell nucleus contours, image segmentation, search for 
contours in an image, gerontology. 
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Введение 
Работа с изображениями ядер клеток является неотъемлемой частью работы как 

биолога, так и аналитика медицинских данных. Как показано в обзорных работах [1, 2], 
морфология ядра клетки имеет огромный информационный потенциал, который может 
быть использован в различных областях медицины. Для анализа морфологии ядра клетки 
необходимо точное выделении самого ядра на снимке клетки, поскольку любые 
неточности в выделении самого ядра могут исказить результаты анализа. В ряде статей 
разработаны алгоритмы детекции и выделения ядер клеток на гистологических снимках 
различных биологических тканей [3, 4]. Так, в работе [3] разработан двухэтапный 
алгоритм детекции ядра клетки. На первом этапе проводилась проверка наличия ядра на 
снимке клетки и если на гистологическом снимке обнаруживалось ядро, то пиксели 
снимка подвергались кластеризации методом k-nn на 3 кластера – фон, область, похожая 
на ядро, и область, точно содержащая ядро. Разработанный алгоритм показал хорошее 
качество и повторяемость результатов на гистологических снимках материалов печени 
пациентов. Разрешение снимков было 0,075 мк/пиксель. Особенностью этих снимков 
являлось то, что на каждом снимке было представлено множество клеток с большим 
числом мелких ядер. В работе [4] опробован алгоритм детекции ядер клеток на 
гистологических снимках состоящий из этапа бинаризации изображения и применения 
морфологических операций в программе MatLab. Для бинаризации изображения 
использовался адаптивный алгоритм Sauvola, который для каждого пикселя вычисляет 
порог бинаризации. Алгоритм был опробован на тестовой базе гистологических 
медицинских изображениях, доступной в интернете. В работе [5] проведен 
сравнительный анализ 11 алгоритмов обнаружения и подсчета ядер клеток и показано, 
что нет единого алгоритма, универсального для всех типов гистологических снимков и 
для каждого типа ткани и разрешения нужно разрабатывать свой алгоритм.  
Особенностью всех этих исследований является поиск ядер клетки и их подсчет без 
возможности сохранения самого ядра клетки и его анализа из-за небольшого увеличения 
на снимках клетки. В то же время имеется ряд программ ImageJ, Drishti, InVesalius, ITK-
SNAP, MITK, GinkgoCADx, 3DSlicer, Platform, VTK, GIMIAS и другие, в которых 
возможно «ручное» выделение ядра клетки на снимках. При ручном выделении ядра 
клетки на снимке затрачивается много времени, результат субъективен и зависит от 
квалификации сотрудника. Наличие единого алгоритма для определенного набора 
гистологических снимков позволило бы автоматизировать этот процесс, уменьшило бы 
риск ручной ошибки и ускорило бы работу специалистов, избавив от рутинной операции 
по выделению ядра на снимке.  
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В данной работе предложен алгоритм выделения и сохранения ядер клеток в 
отдельные файлы из снимков клеток буккального эпителия, окрашенных по Гимзе1, 
полученных на микроскопе Carl Zeiss Primo Star 415500-011 с 1000-кратным увеличением.  

Материалы и методы 
Алгоритм отрабатывался на базе данных из 176 снимков микропрепаратов – 

мазков буккального эпителия, собранных малоинвазивным способом из ротовой полости 
стационарных пациентов мужского и женского пола с легкими степенями полиорганной 
патологии в стадии ремиссии (6 пациентов, из них 3 мужчины и 3 женщины в возрасте 
от 60 до 81 года). Все процедуры выполнялись с информированного согласия пациентов. 
Мазки, окрашенные по стандартной методике окраски мазков по Гимза, предоставлены 
гериатрическим кабинетом лаборатории антивозрастных технологий ГАУЗ СО 
«Института медицинских клеточных технологий» (г. Екатеринбург). Снимки клеток 
были получены на микроскопе Carl Zeiss Primo Star 415500-011 камерой AxioCam ERc 
5s, сенсор: Micron MT9P031, 5 МП, color CMOS, с объективом Plan-ACHROMAT 
100x/1.25 Oil 415500-1604-001 с окуляром WF10X/20 при 1000-кратном увеличении. По 
каждому пациенту количество снимков ядер клеток буккального эпителия отличалось и 
менялось от 20 до 44 снимков. 

Снимки были предварительно обработаны 2 экспертами – врачом клинической 
лабораторной диагностики и медицинским лабораторным техником. В ходе 
микроскопии мазков были сфотографированы только поля зрения, содержащие клетки 
буккального эпителия с неповрежденными ядрами.  

Для оценки точности разработанного алгоритма на следующем этапе обработки из 
всего массива полученных изображений экспертами были выделены «вручную» контуры 
ядер клеток, где ключевым параметром выступала площадь ядра, измеренная в пикселях. 

Алгоритм разрабатывался с помощью библиотеки компьютерного зрения 
OpenCV на языке python 3.11.   

Результаты 
Поскольку на вход в алгоритм подавались снимки, которые однозначно содержат 

ядра, не было необходимости в реализации алгоритма установления наличия ядра на 
снимке клетки. Таким образом, задача алгоритма сводилась к задаче сегментации 
изображения. Сегментация изображения основана либо на выделении областей 
изображения, отличающихся по заданному параметру, либо на выделении границ на 
изображении с последующим построением замкнутых контуров по ним [2]. При 
выделении областей изображения по заданному параметру в качестве параметра часто 
используется порог уровня серого [2], который можно детектировать с помощью метода 
Отсу [6]. Для выделения границ на изображении применяются методы, позволяющие 
найти границу на изображении за счет детекции изменения градиента интенсивности 
пикселей. В число таких методов входят оператор Собеля, оператор Лапласа и метод 
Кэнни.  

В ходе разработки алгоритма исследовались оба подхода в задаче сегментации, 
как на основе разделения сегментов изображения по границе серого, так и по замкнутым 
контурам, полученным по выделенным границам на изображении. 

В первом подходе исследовался алгоритм сегментации, основанный на выделении 
областей, разделенных по порогу серого. Порог серого находился по методу Отсу. В 

 
1 Ассоциация «ФЛМ», МАКМАХ. Российские рекомендации по клинической микробиологии. Методы окраски. 
Документ 2/25. Федерация лабораторной медицины. URL: https://fedlab.ru/upload/medialibrary/8ff/daddiof7tnq 
t4an30fmia8xomblmx2sc/Методы%20окраски.pdf (дата обращения: 10.10.2025). 
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https://fedlab.ru/upload/medialibrary/8ff/daddiof7tnqt4an30fmia8xomblmx2sc/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4%D1%8B%20%D0%BE%D0%BA%D1%80%D0%B0%D1%81%D0%BA%D0%B8.pdf
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методе Отсу находится значение порога, по которому пиксели изображения разделяются 
на два класса так, чтобы дисперсия в классах была минимальной. Метод состоит из 
нескольких этапов. На первом этапе вычисляется гистограмма изображения и частота 
для каждого уровня интенсивности изображения. Далее задается порог разделения 
классов в виде списка значений от 1 до максимального значения уровня интенсивности 
изображения. Пиксели изображения разделяются на 2 класса по первому из списка 
значению порога. Затем вычисляются начальные значения весов классов и средних 
арифметических значений интенсивностей классов. Внутри каждого класса вычисляется 
значение минимизации дисперсии по формуле: 

 𝜎𝜎𝑏𝑏2(𝑡𝑡) =  𝜔𝜔1(𝑡𝑡)𝜔𝜔2(𝑡𝑡)[𝜇𝜇1(𝑡𝑡) − 𝜇𝜇2(𝑡𝑡)]2. (1) 

Операция по разделению на классы и вычислению средних арифметических 
значений интенсивностей, весов и минимизации дисперсии повторяется для всех 
значений порога из списка с сохранением только максимального значения вычисленной 
минимизации дисперсии внутри класса. Значение порога, соответствующее 
максимальному значению минимизации дисперсии внутри класса, есть искомое 
значение порога. 

На вход алгоритма по поиску порога серого подавалось изображение снимка 
клетки в оттенках серого. Алгоритм Отсу по поиску порога серого реализовывался с 
помощью метода threshold библиотеки open cv. Для активации метода Отсу 
использовался параметр метода THRESH_OTSU. 

По найденному порогу проводился поиск замкнутых контуров без их 
аппроксимации. Для реализации использовался метод findContours библиотеки open cv. 
Полученные в результате аппроксимации контуры отрисовывались на снимке клетки 
(Рисунок 1). 

 
Рисунок 1 – Результат выделения контуров на снимке клетки при использовании аппроксимации 

контуров по порогу, найденному методом Отсу. Окраска по Гимзе, увеличение – 1000x 
Figure 1 – The result of contour extraction in a cell image using contour approximation based on the 

threshold found by the Otsu method. Gimpse staining, magnification – 1000x 

Во втором подходе использовалось выделение границ на изображении и 
последующее построение замкнутых контуров по ним. Для этого были опробованы 3 
метода выделения границ: с помощью оператора Собеля [7], оператора Лапласа [8] и 
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метода Кэнни [9]. Сначала производился поиск границ на изображении одним из 3 
методов. Далее строились замкнутые контуры по найденным границам на изображении 
с помощью функции findContours библиотеки OpenCV, в которую в качестве исходного 
изображения для поиска контуров подавалось изображение с найденными на нем ранее 
границами. Найденные с помощью функции findContours контуры отрисовывались на 
изображении клетки.  

Для поиска границ на изображении сначала был опробован оператор Собеля. 
Оператор Собеля основан на предположении, что границы в изображении 
характеризуются резким скачком интенсивности пикселей изображения. Таким образом, 
если взять первую производную по интенсивности пикселей изображения, то ее 
максимум будет соответствовать границе на изображении. Оператор Собеля 
рассчитывает градиент интенсивности пикселей изображения в вертикальном и 
горизонтальном направлениях и вычисляет местонахождение пикселей, где градиент 
интенсивности больше, чем у соседних пикселей или больше, чем заданный порог 
интенсивности. До вычисления градиента интенсивности пикселей производится 
сглаживание изображения методом Гаусса. Оператор Собеля реализован в библиотеке 
OpenCV в методе Sobel. На вход в метод Sobel подается изображение в оттенках серого. 
Пример найденных замкнутых контуров по границам, выделенным оператором Собеля, 
приведен на Рисунке 2. 

 
Рисунок 2 – Результат выделения замкнутых контуров, найденных на снимке клетки по 

границам, определенным оператором Собеля. Окраска по Гимзе, увеличение – 1000x 
Figure 2 – The result of the selection of closed contours found in the cell image along the boundaries 

defined by the Sobel operator. Gimpse staining, magnification – 1000x 

Далее для поиска границ на изображении был опробован оператор Лапласа. 
Оператор Лапласа использует ту же идею по изменению градиента интенсивности 
пикселей на границах изображения, но только рассчитывается вторая производная, 
поскольку ее равенство нулю также показывает наличие границы на изображении. В 
отличие от оператора Собеля, этот метод более чувствителен к шуму на изображении. 
Оператор Лапласа реализован в библиотеке OpenCV в методе Laplaсian. Пример 
найденных замкнутых контуров по границам, выделенным оператором Лапласа, 
приведен на Рисунке 3. 
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Рисунок 3 – Результат выделения замкнутых контуров, найденных на снимке клетки по 
границам, определенным оператором Лапласа. Окраска по Гимзе, увеличение – 1000x  

Figure 3 – The result of the selection of closed contours found in the cell image along the boundaries 
defined by the Laplace operator. Gimpse staining, magnification – 1000x 

Третьим методом для поиска границ на изображении был метод Кэнии. Метод 
Кэнни использует многоступенчатый алгоритм для обнаружения границ на 
изображении. На первом шаге происходит сглаживание изображения Гауссовским 
фильтром для снижения шума. Далее ведется поиск градиентов на изображении в 
вертикальном, горизонтальном и диагональном направлениях. После этого удаляются 
все отличные от максимальных значений градиентов и проводится фильтрация 
полученных значений максимумов по заданным порогам. Итоговая граница строится по 
полученным значениям максимальных градиентов, прошедших фильтрацию. В методе 
Кэнни использовалось изображение в режиме RGB, которое подавалось на вход в метод 
Canny библиотеки OpenCV. Пример найденных замкнутых контуров по границам, 
выделенным методом Кэнни, приведен на Рисунке 4. 

Как очевидно из Рисунков 1–4, только метод Кэнни позволяет выделить границы 
ядра клетки, а не посторонние шумы на снимке клетки. Поэтому далее для выделения 
границ на изображении клетки применялся только метод Кэнни. 

Оба подхода выделения контуров, как по порогу серого, так и на основе 
найденных по методу Кэнни границ на изображении, были испытаны на 10 снимках 
клеток с целью оценить получаемые в результате алгоритмов контуры, и сравнить 
площади наибольшего контура с площадью ядра в клетке, выделенного ручным 
способом в программе ImageJ. В Таблице 1 приведены площади наибольших контуров 
на снимках клеток, полученных по обоим подходам, и площади ядер клеток, 
определенных ручным способом. 
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Рисунок 4 – Результат выделения контуров по границам, найденным по методу Кэнни. Окраска 

по Гимзе, увеличение – 1000x 
Figure 4 – The result of contour selection based on the boundaries found using the Canny method. 

Gimpse staining, magnification – 1000x 

Таблица 1 – Значения площадей максимальных контуров на снимках клеток в пикселях, 
полученных по обоим подходам 
Table 1 – The values of the areas of the maximum contours in the cell images in pixels obtained using 
both approaches 

Площадь максимального 
контура, найденного по методу 
сегментации по порогу серого 

Площадь максимального 
контура, построенного по 

методу Кэнни 

Ручное определение 
площади в программе 

Jmage 
44409 19 43580 
57009 165 54211 
62650 23 60168 
40277 115 37288 
27282 54 25379 
45207 83 43513 
42390 37 41996 
39839 263 37663 
39019 23 36238 
44157 18 43790 

 
Как видно по данным Таблицы 1, метод сегментации по порогу серого дает 

замкнутые контуры площадью, близкой к площади ядра в клетке, в то время как метод 
Кэнни дает массу коротких контуров малой площади, которые хоть и близки к границам 
ядра на снимке (Рисунок 4), но не дают единого замкнутого контура площадью, близкой 
к площади ядра клетки. Полученные по методу Кэнни контуры можно аппроксимировать, 
но использование аппроксимации всегда влечет за собой определенную неточность и 
может давать искажения в определении контуров ядра клетки на снимке.  

Модификация алгоритма Отсу. Алгоритм, основанный на выделении границ 
методом Отсу, был испытан на 50 снимках буккального эпителия 2 разных пациентов. 
Результаты показали, что на ряде снимков не происходит выделение границ. Для 
выявления причин, по которым не срабатывает алгоритм Отсу на этих изображениях, 
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был проведен анализ их гистограмм по каждому каналу изображения – blue, green и red. 
Анализ показал, что на канале blue на всех изображениях наблюдается одномодальное 
распределение (Рисунок 5) и этот канал не может быть использован для поиска порога 
разделения серого.  

   
Рисунок 5 – Снимок клетки, на котором по алгоритму Отсу не удалось выделить границы 

раздела серого и гистограмма канала blue этого снимка. Окраска по Гимзе, увеличение – 1000x 
Figure 5 – A cell image where the Otsu algorithm failed to detect the gray-scale boundaries and the 

histogram of the blue channel of this image. Gimpse staining, magnification – 1000x 

На каналах green и red наблюдаются либо многомодальные, либо двумодальные 
распределения (Рисунки 6 и 7). Таким образом, на одном из этих каналов возможно 
выделение порога разделения серого, но проблема в том, что распределения обычно 
имеют скошенную вершину и далеки от вида нормального распределения. 

   
Рисунок 6 – Пример снимка клетки, на котором по алгоритму Отсу не удалось выделить 

границы раздела серого с гистограммой каналов green и red с двумодальным распределением 
по green каналу. Окраска по Гимзе, увеличение – 1000x 

Figure 6 – An example of a cell image where the Otsu algorithm failed to detect the gray-scale 
boundaries between the green and red channels with a bimodal distribution in the green channel. 

Gimpse staining, magnification – 1000x 



Моделирование, оптимизация и информационные технологии /  
Modeling, Optimization and Information Technology  

2026;14(1) 
https://moitvivt.ru 

 

  9 | 17 

   
Рисунок 7 – Пример снимка клетки, на котором по алгоритму Отсу не удалось выделить 

границы раздела серого с гистограммой каналов green и red с многомодальным распределением 
по каналу green. Окраска по Гимзе, увеличение – 1000x 

Figure 7 – An example of a cell image where the Otsu algorithm failed to detect the gray-scale 
boundaries between the green and red channels with a multimodal distribution in the green channel. 

Gimpse staining, magnification – 1000x 

Поэтому поиск порога, разделяющего эти распределения по отклонению от 
среднего значения интенсивности пикселей, как это делается в алгоритме Отсу, не дает 
устойчивых результатов. При скошенном распределении разумно взять отклонение не от 
среднего, а от медианного значения интенсивностей. В алгоритм поиска порога 
разделения пикселей были внесены изменения, которые вычисляют значение порога на 
основе минимума функции внутриклассовой дисперсии с использованием медиан в 
качестве оценок центральных тенденций для двух подмножеств гистограммы 
интенсивностей. Рассмотрим модифицированный алгоритм Отсу. 

Пусть гистограмма нормированных частот значений интенсивности изображения 
разбита на nbins интервалов. Для каждого возможного порога индекса i ∈ {1,…, nbins−1} и 
i ∈ {1,…, nbins−1} гистограмма делится на две части: левую p1 и правую p2. 
Соответствующие кумулятивные вероятности (массы) обозначаются как q1 = ∑p1 и 
q2 = ∑p2. В случае, если одна из масс оказывается пренебрежимо малой (менее 10-6), 
итерация пропускается во избежание численной неустойчивости. 

Для каждой из подгрупп вычисляются взвешенные интенсивности b1p1 и b2p2, где 
b1, b2 – центры соответствующих гистограммных бинов. Медианы m1 и m2 определяются 
как наименьшие значения взвешенных интенсивностей, для которых кумулятивная 
сумма вероятностей достигает или превышает половины общей массы 
соответствующего подмножества: 

 𝑚𝑚1 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏1𝑗𝑗𝑝𝑝1𝑗𝑗:∑ 𝑝𝑝1𝑘𝑘 ≥ 𝑞𝑞1
𝑗𝑗
𝑘𝑘=1   �, (2) 

 𝑚𝑚2 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑏𝑏2𝑗𝑗𝑝𝑝2𝑗𝑗:∑ 𝑝𝑝2𝑘𝑘 ≥ 𝑞𝑞2
𝑗𝑗
𝑘𝑘=1   �. (3) 

На основе найденных медиан вычисляются внутриклассовые дисперсии v1 и v2 по 
формулам: 

 𝑣𝑣1 = 1
𝑞𝑞1
∑ �𝑏𝑏1𝑗𝑗𝑝𝑝1𝑗𝑗 − 𝑚𝑚1�

2
𝑝𝑝1𝑗𝑗𝑗𝑗 , (4) 

 𝑣𝑣2 = 1
𝑞𝑞2
∑ �𝑏𝑏2𝑗𝑗𝑝𝑝2𝑗𝑗 − 𝑚𝑚2�

2
𝑝𝑝2𝑗𝑗𝑗𝑗 . (5) 
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Целевая функция, подлежащая минимизации, определяется как взвешенная 
сумма дисперсий по формуле: 

 𝑓𝑓(𝑖𝑖) = 𝑣𝑣1𝑞𝑞1 + 𝑣𝑣2𝑞𝑞2. (6) 

Оптимальный порог выбирается как индекс i, минимизирующий f(i) по всем 
допустимым значениям. Таким образом, алгоритм осуществляет адаптивное пороговое 
сегментирование, основанное на статистических характеристиках распределения 
интенсивностей, с акцентом на робастность к асимметрии распределений за счет 
использования медиан вместо математических ожиданий. 

Описанный алгоритм был применен 2 каналами изображения клетки – red и blue. 
На каждом из каналов были получены разные значения порога и, следовательно, 
различные контуры, на основе этих границ. Но успешное разделение, как правило, 
достигалось только по одному из каналов. При этом невозможно было задать один канал 
для всех изображений, так как от изображения к изображению менялись распределения 
интенсивностей по каналам. Поэтому в алгоритм была внесена возможность просмотра 
результатов выделения контуров ядра на выбранном канале и выбор наиболее успешного 
для этого изображения канала для выделения ядра клетки.  

После выбора канала, на котором проводится поиск порога разделения серого, 
найденный порог разделения использовался для построения замкнутых контуров с 
помощью функции findContours библиотеки OpenCV, в которую в качестве исходного 
изображения для поиска контуров подавалось бинаризованное по найденному порогу 
изображение клетки. Найденные с помощью функции findContours контуры 
отрисовывались на изображении клетки. Далее отбирались объекты на снимке клетки с 
площадью, близкой к площади ядра клетки. Контуры с площадью больше заданного 
порога сохранялись и выделялись прямоугольной областью (Рисунок 8).  

 
Рисунок 8 – Выделенное ядро клетки. Окраска по Гимзе, увеличение – 1000x 

Figure 8 – Isolated cell nucleus. Gimpse staining, magnification – 1000x 

Кроме ядер, могли быть выбраны сопоставимые с ними по размеру другие 
объекты на снимке клетки, как показано на Рисунке 9. 
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Рисунок 9 – Пример выделения множества объектов на снимке клетки. Окраска по Гимзе, 

увеличение – 1000x  
Figure 9 – An example of highlighting multiple objects in a cell image. Gimpse staining, 

magnification – 1000x 
 
Поэтому в алгоритме предложен ручной просмотр выделенных областей с 

сохранением выбранных пользователей областей, которые являются ядрами клетки, в 
файлы формата jpg. 

Для повышения точности выделения ядра клетки полученные файлы с 
выделенными областями снимка клетки с найденными ядрами поступали на обработку 
на второй этап алгоритма. 

Второй этап алгоритма. На вход в алгоритм поступал файл с выделенной 
областью снимка клетки, содержащей ядро клетки (Рисунок 10).  

 
Рисунок 10 – Изображение ядра клетки, поступающее на вход второго этапа алгоритма. 

Окраска по Гимзе, увеличение – 1000x  
Figure 10 – Image of the cell nucleus entering the second stage of the algorithm. 

Gimpse staining, magnification – 1000x 

В полученном файле заново проводился поиск контуров, для которого 
использовался подход с разделением по порогу серого, найденного модифицированным 
алгоритмом Отсу. Поиск проводился по всем 3 каналам изображения – green, blue и red. 
Далее предлагалось выбрать канал, на котором разделение прошло наилучшим образом. 
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На полученное изображение накладывалась маска и все, что выходило за пределы 
контура, заливалось белым фоном (Рисунок 11). 

 
Рисунок 11 – Результат выделения уточненного контура ядра из изображения ядра клетки. 

Окраска по Гимзе, увеличение – 1000x  
Figure 11 – The result of extracting the refined contour of the nucleus from the image of the cell 

nucleus. Gimpse staining, magnification – 1000x 

Для того, чтобы зона вне ядра клетки не мешала дальнейшей работе с 
изображением, на полученное изображение уточненных контуров накладывалась маска 
из черных пикселей, интенсивность которых равна 0 (Рисунок 12).  

 
Рисунок 12 – Изображение ядра клетки с наложенной маской по уточненным границам ядра. 

Окраска по Гимзе, увеличение – 1000x  
Figure 12 – Image of the cell nucleus with a superimposed mask along the specified boundaries of the 

nucleus. Gimpse staining, magnification – 1000x 

Оба алгоритма поиска порога серого для бинаризации изображения, как 
классический алгоритм по Отсу, так и модифицированный, были испытаны на 176 
снимках клеток буккального эпителия 6 разных пациентов. Из них классический 
алгоритм по Отсу смог найти порог разделения только на 150 снимках, в то время как 
модифицированный алгоритм нашел порог разделения серого на 171 снимке.  
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Для оценки точности работы модифицированного алгоритма были рассчитаны 
площади ядер на первом и втором этапах работы алгоритма и рассчитана относительная 
ошибка оценки площади ядра δ по формуле: 

 𝛿𝛿 =  𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒−𝑆𝑆𝑡𝑡
𝑆𝑆𝑡𝑡

∙ 100 %, (7) 

где Sexp – площадь ядра в пикселях, полученная по алгоритму, St – площадь ядра в 
пикселях, полученная при ручном выделении ядра в программе ImageJ. 

Результаты оценки точности работы модифицированного алгоритма приведены в 
Таблице 2. 

Таблица 2 – Статистические оценки ошибок определения площади ядра клетки по снимкам на 
первом и втором этапе модифицированного алгоритма 
Table 2 – Statistical estimates of errors in determining the area of the cell nucleus from images at the 
first and second stages of the algorithm 

Статистические значения 
ошибки алгоритма, % На первом этапе На втором этапе 

Среднее значение 6,683 8,003 
Стандартное отклонение 7,289 8,425 
Максимальное значение 43,502 31,035 
Минимальное значение 0,005 0,021 

Как видно по значениям Таблицы 2, наблюдается значительное увеличение 
значений delta_1 и delta_2 в модифицированном алгоритме. Для выяснения причин 
такого отклонения построены гистограммы распределения delta_1 и delta_2 
модифицированного алгоритма (Рисунок 13), которые показали, что основная часть 
значений ошибок лежит в диапазоне от 0 до 30.  

 
Рисунок 13 – Гистограмма ошибок модифицированного алгоритма Отсу 

Figure 13 – Histogram of errors for the modified Otsu algorithm  

Таким образом, вызывают отдельный интерес изображения, на которых 
наблюдается резкое увеличение ошибки алгоритма. Анализ изображений, на которых 
наблюдаются большие значения ошибки модифицированного алгоритма показал, что эти 
клетки имеют ядра с очень неровными краями, которые вручную точно выделить 
невозможно, но модифицированный алгоритм с этим успешно справляется (Рисунок 14).  
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Рисунок 14 – Пример клетки с ядром с неровными краями и результат его обработки 

модифицированным алгоритмом. Окраска по Гимзе, увеличение – 1000x  
Figure 14 – An example of a cell with a jagged nucleus and the result of its processing using a 

modified algorithm. Giemsa staining, magnification – 1000x 

Отличия по площади ядра на таком типе клеток, определенных вручную и по 
алгоритму, будут значительны, что ведет к увеличению значений ошибок как на первом, 
так и на втором этапах. 

Тем не менее, как видно по данным Таблицы 2, применение второго этапа 
алгоритма уменьшает разброс ошибок определения площади ядра. Таким образом, 
использование двухэтапного алгоритма по сравнению с одноэтапным позволяет 
получить более надежные результаты по выделению ядра клетки на снимках. 

Обсуждение 
В работе проведено исследование различных методов сегментации изображения 

на испытуемом наборе снимков. Исследованы методы поиска границ по градиенту 
интенсивности пикселей (алгоритм Кэнни, оператор Собеля) и метод разделения 
областей изображения по границе серого, где порог разделения устанавливался по 
методу Отсу или по его модификации. Результаты исследования показали, что 
исследованные методы поиска границ на испытуемых изображениях по градиенту 
интенсивности пикселей изображения дают большое множество коротких контуров, из 
которых единый замкнутый контур по границе ядра клетки не строится без применения 
аппроксимации. Поэтому для поиска границ ядра клетки на снимках больше подходит 
метод выделение областей изображения по порогу серого. Анализ распределений 
интенсивностей пикселей исследуемых изображений показал, что метод поиска границы 
серого Отсу не может быть применен ко всем изображениям из-за скошенности 
распределений пикселей. Поэтому был разработан модифицированный алгоритм Отсу, 
использующий для поиска границы разделения пикселей отклонение текущих значений 
интенсивностей пикселей от медианы, а не от среднего значения как в классическом 
варианте. Применение модифицированного алгоритма в отличие от классического 
алгоритма Отсу позволило найти границы ядра практически на всех снимках выборки, 
кроме 5, где сами снимки были не качественные и имели сильно размытое изображение 
ядра.  

Разработанный алгоритм дает среднюю ошибку в определении площади ядра 
клетки в 8 %, а применение второго этапа позволяет снизить разброс в ошибке 
определении площади ядра, что свидетельствует о повышении надежности алгоритма. 
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Поскольку разработанный алгоритм с вполне удовлетворительной точностью и 
надежностью определяет площадь ядра клетки можно заключить, что само ядро клетки 
выделяется в ходе использования алгоритма в достаточной степени для дальнейшего 
анализа морфологии ядра клетки. Таким образом, разработанный алгоритм может быть 
использован не только для локальной задачи выделения ядра клетки и сохранения его в 
отдельный файл, но и встроен в алгоритм анализа морфологии ядра клетки, что может 
быть использовано как в общеморфологической диагностике состояния здоровья и 
патологии организма человека, так и для разработки новых подходов к морфологической 
диагностике, поиску новых ранних маркеров состояния здоровья или болезни, процесса 
старения [10, 11] и др. 

Заключение 
В работе предложен двухэтапный алгоритм выделения ядра клетки на 

изображениях мазков буккального эпителия человека, взятых из ротовой полости и 
окрашенных по Гимзе. Разработанный в библиотеке open cv алгоритм позволяет 
выделять ядра клеток с достаточно высокой точностью и надежностью, что дает 
возможность автоматизировать процесс выделения ядра клетки и встроить полученный 
алгоритм в процесс анализа морфологии ядра клетки. 
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