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Резюме. В статье предложены миварная модель и миварный алгоритм для динамического 
планирования траекторий в больших помещениях с плотным скоплением перемещающихся 
людей. Основная идея заключается в вычислении параметров эллиптической изменяющейся 
зоны безопасности для динамических препятствий на основе интеграции семантического 
детектирования объектов и геометрического картирования. Миварная модель опирается на 
семантическую информацию: класс объекта, скорость и факторы сцены. Миварная экспертная 
система рассчитывает ключевые параметры зоны безопасности и позиции прогнозирования, что 
обеспечивает дифференцированный запас безопасности для различных семантических целей, 
например, таких как дети, пожилые люди, взрослые. Рассчитанная зона безопасности будет 
рассматриваться в планировании пути как размер самого препятствия. Научная новизна 
заключается в использовании динамических эллипсов, изменяющих свои размеры в зависимости 
от семантической информации, для определения зоны безопасности динамических препятствий. 
Миварный алгоритм верифицирован на платформе, реализованной в Python с использованием 
Pygame, с интеграцией интерфейса обмена данными с КЭСМИ Wi!Mi, что позволило 
визуализировать процесс планирования, подтвердить эффективность и количественно оценить 
прирост безопасности. Перспективы исследований включают глубокую интеграцию с методами 
машинного обучения для усиления робастности и гибкости обновления правил. 
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Mivar model and algorithm of information processing for 
avoiding dynamic obstacles with a changing safety zone 

Q. Shen 
Bauman Moscow State Technical University, Moscow, the Russian Federation 

Abstract. We propose a mivar model and a mivar algorithm for dynamic trajectory planning in large 
indoor spaces with dense crowds of moving people. The main idea is to calculate the parameters of an 
elliptical changing safety zone for dynamic obstacles by integrating semantic object detection and 
geometric mapping. The mivar model relies on semantic information: object class, speed, and scene 
factors. The mivar expert system calculates key parameters of the safety zone and prediction position, 
providing differentiated safety margins for various semantic targets, such as children, the elderly, and 
adults. The calculated safety zone will be considered in path planning as the size of the obstacle itself. 
The scientific innovation lies in the use of dynamic ellipses, changing their size depending on semantic 
information, to determine the safety zone of dynamic obstacles. The mivar algorithm was verified on a 
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platform implemented in Python using Pygame, with integration of the data exchange interface with the 
Wi!Mi. This allowed for visualization of the planning process, confirmation of effectiveness, and 
quantification of safety gains. Prospects for research include deep integration with machine learning 
methods to enhance the robustness and flexibility of rule updates. 

Keywords: dynamic obstacles, changing safety zone, semantic perception, mivar expert system, KESMI, 
robot trajectory planning, safety control, scene recognition, logical artificial intelligence. 
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Введение 
В настоящее время робототехника [1] и технологии машинного обучения [2] 

развиваются чрезвычайно быстро. Роботы находят широкое применение в 
промышленном производстве1, бытовом обслуживании и сфере общественных услуг [3]. 
В этих областях ведутся активные исследования по разработке сценариев применения 
роботов [4] с целью снижения трудовых затрат человека [5]. В сфере общественных 
услуг [6], таких как железнодорожные вокзалы, гостиницы, аэропорты, торговые центры 
[7] и больницы, где структура персонала сложна, а среда неструктурированна, роботы 
сталкиваются с двойным вызовом, связанным с обеспечением как эффективности, так и 
безопасности. 

Мобильные роботы, работающие в больших внутренних пространствах 
(аэропорты, торговые центры, вокзалы), должны обеспечивать безопасное и 
эффективное передвижение в переполненной, динамичной и семантически сложной 
среде. Традиционные алгоритмы [8] планирования, основанные исключительно на 
геометрических препятствиях, затрудняют различение значимости таких объектов, как 
дети, пожилые люди, взрослые, группы людей или статичные объекты, к примеру, 
ребенок, двигаясь вперед, может внезапно отвлечься на что-то поблизости и сразу же 
побежать в сторону, это создает риск быстрого изменения направления и скорости. 
Следовательно, для таких объектов необходимо предусмотреть большую зону 
безопасности, чем для взрослых людей, которые, прежде чем изменить направление 
движения, обычно оценивают обстановку, осматриваются по сторонам, а затем меняют 
траекторию движения. Кроме того, в случае столкновения с роботом взрослый человек 
обладает большей устойчивостью к возможным травмам, поэтому их зона безопасности 
меньше. Это может привести к двум противоположным ситуациям: недостаточному 
запасу безопасности или чрезмерной консервативности [9]. Компьютерное зрение для 
обнаружения объектов способно предоставить семантическую информацию, такую как 
тип объекта, его категория и поза, однако для инженерной реализации важно определить, 
как объединить эту информацию с геометрическими данными в интерпретируемые и 
управляемые ограничения планирования действий робота [10]. В работе [11] 
представлен алгоритм избегания динамических препятствий роботом, применимый в 
больших внутренних помещениях.  

Целью данной работы является улучшение планирования траекторий мобильных 
роботов на основе эллиптической изменяющейся зоны безопасности для динамических 
препятствий (различных людей) в больших помещениях. Для достижения цели 
необходимо решить следующие 3 задачи: 

1) создать миварную модель в формализме миварной базы знаний; 
 

1 Вепплинг Д., Эрикссон А., Йоханссон Э. Система передачи промышленного робота, промышленный робот и способ 
для поглощения влаги. Патент на изобретение № RU 2529932 C2: заявл. 29.06.2010; опубл. 10.10.2014. 
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2) разработать миварный алгоритм обработки информации; 
3) провести экспериментальные исследования созданного программного 

обеспечения планирования траекторий мобильных роботов.  
Также в данной работе используется технология распознавания изображений [12] 

для обнаружения объектов в поле зрения робота, вычисление их относительного 
положения и скорости [13], с присвоением динамическим объектам расширенной «зоны 
безопасности». Кроме того, распознаванием сцены [14] определяется текущая сцена для 
корректировки стратегии. Зона безопасности представляет собой виртуальное 
препятствие. Модифицирована математическая модель: уточнен фактор упреждения, 
что позволяет «зоне безопасности» смещаться на заданное расстояние вдоль 
направления скорости, повышая ее адекватность. Для реализации обработки 
информации на основе логических правил применяется миварная экспертная система 
(МЭС): с помощью небольшого числа физически интерпретируемых параметров 
учитываются факторы влияния, такие как «категория/скорость/сцена», на большую и 
малую оси эллипса, его ориентацию и степень упреждения. Эти параметры поступают в 
планировщик траектории [15] для формирования полного пути движения. Модель 
обеспечивает как интерпретируемость, так и дифференцируемость и может служить 
«мостом» между логическим искусственным интеллектом и рефлексными 
статистическими системами машинного обучения [16].  

В данной работе, основываясь на предыдущей работе [11], улучшена модель 
эллиптической зоны безопасности с учетом слияния семантики и геометрии. Таким 
образом, тема работы актуальна и имеет большое практическое значение.  

Описание предметной области. Миварная технология обработки информации [17] 
представляет собой передовую технологию логического искусственного интеллекта. 
Метод логического вывода, реализованный в миварной экспертной системе (МЭС), 
обладает линейной вычислительной сложностью. Применение миварной сети [18] 
обеспечивает удобное и быстрое построение алгоритма обработки информации и 
принятия решения.  

В настоящее время миварная технология успешно применяется во многих 
областях, таких как слияние информации от множественных сенсоров [19], 
конфигурирование задач для складских роботов [20], автоматическое создание 
миварных баз знаний [21], разработка медицинских баз знаний [22], эргономический 
анализ [23] и др. Таким образом, универсальность миварной технологии достаточна для 
создания логического «мозга» робота. 

Хотя введение визуальной и семантической информации [24] способствует 
повышению способности принятия решений, существующие методы семантической 
навигации по-прежнему имеют существенные ограничения в инженерной реализации: 
большинство методов полагаются на нейронные сети типа «черный ящик», которые 
напрямую выводят команды уклонения или карты стоимости, что затрудняет 
интерпретацию [25], калибровку и аудит в сценариях с повышенными требованиями к 
безопасности. Кроме того, наблюдается недостаточная характеристика запаса 
безопасности в переднем и заднем направлениях с учетом скорости, отсутствие гладкой 
и непрерывной модели зоны безопасности с четким физическим смыслом, а также 
недостаточно систематизированные адаптивные стратегии для различных 
пространственных форм и плотности людских потоков, что затрудняет быструю 
миграцию и развертывание в разных сценариях с использованием небольшого числа 
калибровочных параметров [26]. 

С другой стороны, экспертные системы или «системы, основанные на правилах», 
обладают естественными преимуществами в плане интерпретируемости [27] и 
контролируемости [28], но их традиционная реализация в основном ограничивается 



Моделирование, оптимизация и информационные технологии /  
Modeling, Optimization and Information Technology  

2026;14(1) 
https://moitvivt.ru 

 

  4 | 16 

символьным логическим выводом [29] и не имеет эффективного интерфейса с 
планировщиками траекторий и контроллерами на основе непрерывной оптимизации. В 
связи с этим основной задачей настоящего исследования выступает создание «модели-
моста», которая динамически взаимодействует с факторами «категория-скорость-сцена» 
и напрямую передает результаты логического вывода на миварной модели в 
планировщик. 

Материалы и методы 
Создание миварной базы знаний для МЭС. Данное исследование создает 

иерархическую архитектуру «восприятие – слияние – логический вывод – планирование 
– управление» для достижения безопасного и эффективного передвижения в 
переполненной, динамичной и семантически сложной внутренней среде. Миварная база 
знаний представляет собой миварную модель обработки информации, которая основана 
на получении мультисенсорных входных данных, которые через выравнивание и 
моделирование неопределенности поступают в МЭС для генерации интерпретируемых 
параметров эллиптической зоны безопасности, которые в конечном итоге поступают в 
блок планирования траектории и управления движением, формируя замкнутый контур 
«точка – точка». Функциональные задачи каждого уровня модели следующие: 

1. Обнаружение объектов и предварительное восприятие. На основе RGB-камеры 
и лидара получается информация о категории и положении объектов, из которой 
выводятся скорость и курс, в сочетании с одометром и гироскопом (IMU) формируется 
временно согласованный вектор состояния объекта, и через временные метки и внешние 
параметры проекция измерений изображения в систему координат робота или в сетку 
занятости. 

2. Слияние данных сенсоров. Проводится геометрическая согласованность 
между рамками обнаружения на изображении и облаком точек лазера, оцениваются 
координаты объекта в системе координат робота и геометрические размеры, 
вычисляется относительное расстояние и другие величины, обеспечивая основу для 
регулировки весов последующих правил и планирования. 

3. Логический вывод и генерация зоны безопасности. Используя информацию об 
обнаружении объектов и тип сцены в качестве движущих сил, через функцию обработки 
миварных правил (𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) и функцию компенсации сцен (𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) выводятся параметры 
зоны безопасности для динамических и статических препятствий в поле зрения. МЭС 
описывает важность категории, влияние сглаживания скорости и адаптацию к сцене с 
помощью небольшого количества физически интерпретируемых наборов параметров, 
сохраняя логический вывод линейной сложности для поддержки работы в реальном 
времени. 

4. Планирование. Зона безопасности включается в конфигурационное 
пространство в качестве препятствия жесткого ограничения или записывается в 
функцию стоимости в качестве мягкого ограничения, интегрируется с алгоритмами 
A*/D* (глобальными) или RRT*/TEB/MPC (локальными), генерируя выполнимую 
гладкую траекторию с компромиссом безопасность-эффективность. 

5. Управление. На уровне управления выполняется замкнутое отслеживание 
сгенерированной траектории, реализуя точное выполнение команд скорости, кривизны 
и позы. Контроллер обеспечивает устойчивое движение робота вдоль запланированного 
пути с учетом динамических ограничений и возмущений среды. 

Математическое определение модели. Основная функция МЭС 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  – это 
отображение входной информации о препятствиях и информации о классификации 
сцены на параметры эллиптической зоны безопасности:  
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 �𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝛼𝛼,𝛽𝛽� = 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐼𝐼𝑖𝑖, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), (1) 

где 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  – окончательная большая полуось эллиптической зоны безопасности, 
𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  – окончательная малая полуось эллиптической зоны безопасности, 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  – 
коэффициент масштабирования зоны безопасности, зависящий от категории объекта, 
𝛼𝛼  – коэффициент влияния скорости на большую полуось, 𝛽𝛽  – коэффициент влияния 
скорости на малую полуось. 

Для каждого объекта i, обнаруженного роботом с помощью технологии 
обнаружения объектов, его состояние определяется входным вектором: 

 𝐼𝐼𝑖𝑖 = [𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖, 𝑠𝑠, 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑣𝑣𝑖𝑖 ,𝜃𝜃𝑖𝑖], (2) 

где 𝐼𝐼𝑖𝑖 – состояние объекта 𝑖𝑖, 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑖𝑖 ∈ ℤ+– идентификатор категории объекта, 𝑠𝑠 – базовый 
размер объекта, вычисленный при обнаружении, 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 – текущее положение в системе 
координат робота, 𝑣𝑣𝑖𝑖  – скалярная величина скорости движения, 𝜃𝜃𝑖𝑖  – направление 
движения (rad), для статичных объектов устанавливается 0. 

Геометрическое определение эллипса: 

 (𝑥𝑥′−𝑚𝑚)2

𝑎𝑎2
+ (𝑦𝑦′−𝑛𝑛)2

𝑏𝑏2
= 1, (3) 

 �𝑥𝑥
′

𝑦𝑦′� = � cos𝜃𝜃 sin𝜃𝜃
−sin𝜃𝜃 cos𝜃𝜃� �

𝑥𝑥 − 𝑚𝑚
𝑦𝑦 − 𝑛𝑛�, (4) 

где (𝑚𝑚, 𝑛𝑛)  – центр эллипса с учетом упреждающей позиции, 𝑎𝑎  – большая полуось 
эллипса, 𝑏𝑏  – малая полуось эллипса, (𝑥𝑥,𝑦𝑦)  – исходная система координат эллипса, 
(𝑥𝑥′,𝑦𝑦′) – повернутая система координат. 

Базовые параметры масштабирования зоны безопасности: 

 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑠𝑠 ∙ �1 + 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�, (5) 

где 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  – базовый радиус зоны безопасности с учетом категории объекта, 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  – 
базовый коэффициент масштабирования зоны безопасности для каждой категории. 

О сценарной адаптивной корректировке. Для различения влияния различных сцен 
на принятие решений в данной работе также установлен фактор влияния сцены, который 
характеризует степень стесненности пространства. Чем меньше этот параметр, тем более 
стесненная среда, чем больше, тем более открытое пространство: 

 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ (1,3], (6) 
где верхняя граница 3 является эмпирическим параметром, полученным 
экспериментальным путем. В зависимости от конкретных условий применения могут 
использоваться и большие значения. Например, для очень просторных сред, таких как 
выставочные залы или аэропортовые терминалы, можно установить λ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2,5  или 
выше, что позволит роботу расширить зону безопасности для более консервативного 
поведения в высокоскоростных режимах. 

Сценарная адаптивная корректировка: 

 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = max(𝑠𝑠, 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∙ 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), (7) 

где 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  – радиус зоны безопасности, скорректированный в зависимости от степени 
открытости сцены, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – коэффициент корректировки, устанавливаемый отдельно для 
каждой сцены, скорректированный фактор сцены определяется как: 

− узкая/наполненная среда: 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑒𝑒 > 1,0 (умеренное уменьшение зоны 
безопасности); 
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− открытая/высокоскоростная среда: 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  < 1,0 (умеренное увеличение зоны 
безопасности); 

− нейтральная среда: 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1,0 (сохранение исходной зоны безопасности). 
Большая полуось (вдоль направления скорости), она характеризует диапазон 

возможной активности динамического объекта вдоль направления скорости: 

 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ �1 + 𝛼𝛼 ⋅ 𝑣𝑣
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

�, (8) 

где 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  – большая полуось, учитывая влияние скорости, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  – максимальная 
эталонная скорость – 2,0 м/с. 

Малая полуось (перпендикулярно направлению скорости), характеризует 
диапазон возможного изменения динамического объекта перпендикулярно направлению 
скорости: 

 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ �1 + 𝛽𝛽 ⋅ 𝑣𝑣
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

�, (9) 

где 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 – малая полуось, учитывая влияние скорости. 
Ограничения: 
− 𝛼𝛼 > 𝛽𝛽 > 0 (обеспечивает более быстрый рост большой полуоси); 
− 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (малая полуось не меньше базового радиуса). 
Рекомендуемые значения параметров: 
− 𝛼𝛼 (коэффициент большой полуоси): 0,8–2, типичное значение 1,5; 
− 𝛽𝛽 (коэффициент малой полуоси): 0,1–0,3, типичное значение 0,2. 
Вычисление упреждающей позиции: 

 𝑚𝑚 = 𝑥𝑥 + cos𝜃𝜃 ⋅ 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ �
𝑣𝑣

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚+𝑣𝑣
�, (10) 

 𝑛𝑛 = 𝑦𝑦 + sin𝜃𝜃 ⋅ 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ �
𝑣𝑣

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚+𝑣𝑣
�. (11) 

С помощью функций (10) и (11) можно обеспечить перемещение эллиптической 
зоны безопасности вперед в направлении скорости. Чем больше скорость, тем больше 
величина перемещения вперед. Функция sigmod ограничивает величину перемещения 
вперед эллиптической зоны безопасности значением [0, 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) для обеспечения того, 
чтобы зона безопасности не выходила за пределы фактического положения объекта. 

Таким образом, можем перейти к математической модели, с учетом всех факторов 
влияния, когда необходимо обеспечить, чтобы зона безопасности не была меньше 
базовых размеров, поэтому окончательные параметры эллиптической зоны безопасности 
получаются по следующим формулам: 

Большая полуось: 

 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = max �𝑠𝑠, 𝑠𝑠�1 + 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� �1 + 𝛼𝛼 ⋅ 𝑣𝑣
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

� 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�. (12) 

Малая полуось: 

 𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = max �𝑠𝑠, 𝑠𝑠�1 + 𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� �1 + 𝛽𝛽 ⋅ 𝑣𝑣
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

� 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�. (13) 

Центр эллипса: 

 𝑚𝑚 = 𝑥𝑥 + cos𝜃𝜃 ⋅ 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⋅
𝑣𝑣

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚+𝑣𝑣
, (14) 

 𝑛𝑛 = 𝑦𝑦 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ⋅
𝑣𝑣

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚+𝑣𝑣
. (15) 
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Предложенный миварный алгоритм обработки информации отличается от 
аналогов тем, что реализован расчет динамических размеров препятствий с 
изменяющейся зоной безопасности. На основе миварной модели (миварной базы знаний) 
разрабатывается безопасный миварный алгоритм планирования траектории, основная 
часть которого описана выше. Отметим, что кроме алгоритма «до миварной модели» 
существует технология обнаружения объектов на основе изображений и лазерного 
дальномера, технология управления роботом, алгоритмы по обработке данных сенсоров 
и т. д., а «после миварной модели» необходимо еще отобразить результаты работы 
алгоритма на карту планирования траектории робота, вычислить траекторию движения 
и выдать команды управления роботом.  

В данной работе это реализуется в комплексе имитационного моделирования: на 
Рисунке 1 показан конкретный пример, а на Рисунке 2 представлена схема 
предложенного миварного алгоритма обработки информации для избегания 
динамических препятствий с изменяющейся зоной безопасности, основанного на 
семантической информации. 

 
Рисунок 1 – Описание модели и заданные параметров в КЭСМИ 

Figure 1 – Description of the model and set parameters in MSS 

Эксперимент и результат. Для проверки эффективности предложенных модели и 
алгоритма вычисления зоны безопасности для избегания динамических препятствий с 
изменяющейся зоной безопасности нами разработана система моделирования для 
проведения эксперимента: от построения программной среды и реализации алгоритма 
до оценки производительности. Эксперимент проверяет производительность модели в 
аспектах безопасности, эффективности передвижения, адаптации к сцене и т. д. 

Система моделирования создана на основе Python 3.8 и Pygame 2.5, и реализована 
на аппаратной платформе Intel i7-14700H CPU, 16GB RAM. Система моделирования 
использует модульный дизайн, включающий следующие основные модули: 
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1. Модуль восприятия: моделирует слияние множественных сенсоров, 
предоставляет информацию о категории объектов, положении, скорости и т. д. 

2. КЭСМИ Wi!Mi: реализует функцию отображения семантика-геометрия 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 и 
сценарную адаптивную корректировку. 

3. Модуль планирования траектории: интегрирует алгоритм RRT*, поддерживает 
глобальное и локальное перепланирование. 

4. Модуль визуализации: отображает в реальном времени траекторию робота, 
зоны безопасности препятствий и диапазон обзора. 

 
Рисунок 2 – Схема алгоритма принятия решений в КЭСМИ 

Figure 2 – Scheme of the decision-making algorithm in MSS 

Для всесторонней оценки производительности алгоритма разработаны четыре 
типичные внутренние сцены (Таблица 1), охватывающие различные пространственные 
формы и плотность людских потоков. 

Для каждой сцены предустановлены начальная точка, конечная точка, 
расположение статичных препятствий и фактор сцены 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, динамические препятствия 
генерируются случайным образом по типу и движению. 

Препятствия разделены на пять категорий: дети, взрослые, статичные объекты, 
пожилые люди, группы людей. Каждая категория имеет различные параметры зоны 
безопасности (Таблица 2), настраиваемые через файл параметров. 
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Таблица 1 – Конфигурация экспериментальных сцен 
Table 1 – Configuration of experimental scenes 

ID Название сцены 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Характеристики 
пространства 

Конфигурация 
препятствий 

1 Узкий коридор 1.1 Длинный проход, 
стены с обеих сторон 

Динамические 
препятствия + статичные 
стены 

2 Открытое 
пространство 3 Просторное, без 

препятствий 
Только динамические 
препятствия 

3 Сложный 
лабиринт 1.5 Множество поворотов, 

тупики 

Динамические 
препятствия + сложная 
статичная структура 

Таблица 2 – Примеры параметров типов препятствий 
Table 2 – Examples of obstacle type parameters 

Тип Дети Взрослые Статические Старики Группы людей 
𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2,5 1,3 1 1,8 1,3 

Для количественной оценки производительности алгоритма используются 
следующие критерии: 

Частота нарушений безопасности: 

 𝑓𝑓 = 𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝ℎ

, (16) 

где 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝ℎ – длина траектории, 𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 – количество нарушений безопасности. 
Для проведения эксперимента реализованы два алгоритма: 
Базовый алгоритм (сцена 1): традиционное геометрическое избегание 

препятствий (без семантической информации, единый радиус безопасности). 
Миварный алгоритм (сцена 2): полная миварная модель слияния семантики- 

скорости – сцены. 
В процессе поведения эксперимента, каждый алгоритм запускается 10 раз в одной 

и той же сцене, среднее значение берется в качестве окончательного результата. 
Ожидается, что миварный алгоритм покажет хорошие результаты в следующих 

аспектах: 
1. В стесненных сценах избежит чрезмерной консервативности, повысив 

эффективность передвижения.  
2. Для высокодинамичных препятствий (таких как дети или группы людей) 

обеспечит больший запас безопасности. 
3. В таких сценах, как сложные лабиринты, сохранит высокий уровень 

успешности и гладкость траектории. 

Результаты 
Для каждой сцены базовый алгоритм повторяется 10 раз, процесс моделирования 

показан на Рисунке 3, а результаты моделирования приведены в Таблице 3. 
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Таблица 3 – Результат эксперимента в сцене 1 
Table 3 – The result of the experiment in scene 1 

Показатель Узкая сцена Открытая сцена Сцена лабиринта 
Средняя длина пути 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝ℎ 1244,8 1021,3 1653,0 
Среднее количество 
столкновений 𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

8,6 3,7 10,2 

Средняя частота 
нарушений безопасности 𝑓𝑓 0,0069 0,0036 0,0062 

 
Рисунок 3 – Моделирование планирования траектории робота на основе базового алгоритма 

Figure 3 – Simulation of the robot trajectory planning based on the basic algorithm 

Для каждой сцены миварный алгоритм повторяется 10 раз, процесс моделирования 
показан на Рисунке 4, результаты моделирования приведены в Таблице 4. 

Таблица 4 – Результат эксперимента в сцене 2 
Table 4 – The result of the experiment in scene 2 

Показатель Узкая сцена Открытая 
сцена 

Сцена 
лабиринта 

Средняя длина пути 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝ℎ 1256,9 1014,7 1691,6 
Среднее количество столкновений 
𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

5,7 1,2 8,9 

Средняя частота нарушений 
безопасности 𝑓𝑓 0,0045 0,0012 0,0053 
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Рисунок 4 – Моделирование планирования траектории робота на основе миварного алгоритма 

Figure 4 – Simulation of the robot trajectory planning based on the mivar algorithm 

Из полученных экспериментальных результатов установлено, что предложенная 
миварная модель обработки информации, основанная на слиянии семантического 
восприятия и миварной экспертной системы превосходит традиционные «базовые» 
алгоритмы геометрического избегания препятствий по критериям безопасности, 
эффективности траектории и адаптации к различным типам сцен. В трех типичных 
сценариях средняя частота нарушений безопасности оказалась ниже, чем у базового 
алгоритма; в частности, в открытой сцене показатель снизился с 0,0036 до 0,0012, что 
соответствует уменьшению на 66,7 %. Это подтверждает, что разработанные миварные 
модель и алгоритм, на основе семантического восприятия и механизмов сценарной 
адаптации, значительно усиливает способности робота избегать динамических 
препятствий. 

Обсуждение 
Несмотря на то, что миварные модель и алгоритм показали хорошую 

производительность в эксперименте, при фактическом развертывании возможны 
различные сложные ситуации, поэтому наша работа может быть продолжена в 
следующих направлениях: 

1. Механизм онлайн-обучения: объединение алгоритмов обучения с 
подкреплением или онлайн-оптимизации для реализации автоматической калибровки и 
динамической корректировки таких параметров, как 𝛼𝛼,𝛽𝛽, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝛾𝛾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,  что снижает 
«ручное управление». 

2. Моделирование взаимодействия человека и машины: введение в зону 
безопасности предсказания намерений пешеходов и различных моделей социального 
поведения, что сделает поведение нашего робота более соответствующим ожиданиям 
человека и приведет к повышению «приемлемости» в общей среде сосуществования. 

3. Межплатформенная проверка: проведение системной проверки на реальных 
роботизированных платформах (например, таких как колесно-шагающие сервисные 
роботы) и большем количестве реальных сценариев, что позволит перейти миварной 
модели и алгоритму от имитационного моделирования к практическому внедрению. 
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Заключение 
Для автономных роботов предложены миварная модель и алгоритм избегания 

динамических препятствий с изменяющейся зоной безопасности в больших помещениях 
с высокой плотностью людей, которые объединяют семантическое восприятие и 
миварную экспертную систему. Все вместе это обеспечивает интерпретируемое 
отображение категории препятствия, состояния движения и характеристик сцены на 
параметры эллиптической зоны безопасности препятствий для мобильного робота. 
Созданная миварная система отличается высокой интерпретируемостью и 
контролируемостью благодаря использованию параметров с четким физическим 
смыслом �α,β, λ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, γ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�, а также динамической адаптивностью, реализуемой через 
механизм упреждения, зависящий от скорости, и корректировкой фактора сцены.  

Достигнута цель работы по улучшению планирования траекторий мобильных 
роботов на основе эллиптической изменяющейся зоны безопасности для динамических 
препятствий (различных людей) в больших помещениях. Успешно решены все 
поставленные задачи: создана миварная модель в формализме миварной базы знаний; 
разработан миварный алгоритм обработки информации и проведены экспериментальные 
исследования созданного программного обеспечения планирования траекторий 
мобильных роботов.  

Экспериментальные исследования подтвердили способность созданной 
программной системы, включающей миварные модель и алгоритм, адаптироваться к 
различным условиям среды. В узких коридорах миварные модель и алгоритм, за счет 
умеренного сжатия зоны безопасности, позволяют роботу избегать чрезмерно 
консервативного обхода, повышая общую эффективность перемещения. В открытых 
пространствах, напротив, происходит расширение зоны безопасности, что снижает риск 
столкновений. Для динамичных категорий объектов, таких как дети и группы людей, 
модель автоматически назначает увеличенные зоны безопасности и более длинное 
упреждающее расстояние, что существенно сокращает вероятность столкновений.  

Таким образом, разработанные миварные модель и алгоритм обеспечивают 
баланс между безопасностью, эффективностью и адаптацией к сцене, что делает такой 
подход перспективным решением для автономной навигации роботов в помещениях с 
динамическими условиями и высокой плотностью разнородных объектов. 
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