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Резюме. В работе представлена модификация самонастраивающегося генетического алгоритма 

(SelfCGA), направленная на повышение эффективности поиска в задачах глобальной 

оптимизации. Предложенный подход основан на сочетании динамической коррекции области 

поиска с кластеризацией фенотипов текущей популяции, что позволяет более точно выявлять и 

адаптивно исследовать перспективные области пространства решений. Использование 

кластеризации способствует поддержанию популяционного разнообразия, а также снижает 

вероятность преждевременной сходимости алгоритма к локальным экстремумам. Для оценки 

эффективности предложенной модификации были проведены вычислительные эксперименты на 

стандартном тестовом наборе CEC2017 при размерностях пространства поиска 10, 30 и 50. 

Каждый из сравниваемых алгоритмов запускался 50 независимых раз, что обеспечило 

статистическую достоверность результатов. В ходе экспериментов анализировались средние и 

наилучшие значения функций пригодности, а также динамика сходимости в процессе 

эволюционного поиска. Полученные результаты показывают, что модифицированный алгоритм 

SelfCGA с динамической коррекцией области поиска достигает состояния стабилизации, при 

котором улучшения решений практически прекращаются, за меньшее число поколений для 

большинства тестовых функций, причем данное преимущество сохраняется при увеличении 

размерности задачи. Отсутствие необходимости ручной настройки параметров и сохранение 

базовой структуры SelfCGA делают предложенную модификацию удобной и перспективной для 

практического применения. 
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Abstract. This paper presents a modification of the self-configuring genetic algorithm (SelfCGA) aimed 

at improving search efficiency in global optimization problems. The proposed approach combines 

dynamic correction of the search domain with phenotype clustering of the population, which makes it 
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possible to identify promising regions of the solution space more effectively. The use of clustering helps 

maintain population diversity and reduces the risk of premature convergence to local optima. To 

evaluate the proposed modification, computational experiments were conducted using the CEC2017 

benchmark suite with problem dimensions of 10, 30, and 50. Each algorithm was executed 50 

independent times, ensuring statistical reliability of the results. The performance was assessed by 

comparing average and best fitness values, as well as by analyzing the convergence dynamics during 

the evolutionary process. The experimental results demonstrate that the modified SelfCGA with 

dynamic correction of the search domain reaches a stabilization state – where further improvements 

during the evolutionary search become negligible – in fewer generations for most benchmark functions. 

This advantage remains evident even as the dimensionality of the search space increases. The proposed 

modification does not require manual parameter tuning and does not increase the structural complexity 

of the base SelfCGA, which makes it well suited for practical applications. 

Keywords: global optimization, self-configuring algorithms, search space adaptation, population 

clustering, dynamic correction of the search domain. 
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Введение 

Современные задачи глобальной оптимизации нередко обладают высокой 

размерностью, неоднородным ландшафтом целевой функции и большим количеством 

локальных экстремумов. В таких условиях классические методы, использующие 

градиентную информацию или опирающиеся на аналитическое описание функции, 

оказываются малоэффективными. Реальная структура многих задач неизвестна заранее, 

а вычисление даже одного значения функции может быть дорогостоящим. Поэтому все 

больше внимания уделяется эволюционным и популяционным алгоритмам. 

Генетический алгоритм (ГА) относится к классу эволюционных методов 

оптимизации. Он оперирует множеством решений, называемых индивидами, каждый из 

которых содержит набор параметров задачи. На каждом шаге алгоритм выполняет 

оценку пригодности индивида, выбирает более успешные решения и создает новые с 

помощью операторов мутации и кроссинговера. Поиск осуществляется не точечно, а 

через эволюцию популяции, что позволяет обходить локальные экстремумы и 

исследовать различные области пространства решений. ГА не требует знания градиентов 

или аналитического вида целевой функции 

Одной из ключевых тенденций развития эволюционных алгоритмов стала идея 

самонастройки – автоматической адаптации операторов и параметров в процессе работы. 

Исторически большинство эволюционных методов требовали ручного подбора 

параметров: вероятностей мутации и кроссинговера, стратегии селекции, размера 

популяции и других гиперпараметров. Их неверный выбор мог резко снизить качество 

решения, а поиск оптимальной конфигурации занимал значительное время. На этом 

фоне возникла концепция self-adaptive / self-configuring эволюционных алгоритмов, где 

сам алгоритм постепенно подстраивает собственное поведение под структуру 

ландшафта целевой функции [1, 2]. Одним из представителей этого подхода является 

SelfCGA – самонастраивающийся ГА, в котором вероятности мутации и кроссинговера 

автоматически корректируются по статистике поколений. Такой подход снижает 

зависимость результата от пользовательских настроек и делает алгоритм более 

автономным [3]. Однако самонастройка операторов решает только одну сторону 

проблемы – управление динамикой эволюции. 

https://moitvivt.ru/ru/journal/article?id=2150
https://moitvivt.ru/ru/journal/article?id=2150
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Ранее в литературе был предложен метод динамической коррекции области 

поиска (ДКОП) [4], предполагающей целенаправленное изменение пространства поиска 

с течением поколений. Этот принцип реализован в алгоритме SelfCGA. Новая версия 

алгоритма анализирует фенотипы популяции с помощью кластеризации и выявляет 

области, которые не способствуют дальнейшему улучшению решения. Индивидов из 

таких «неперспективных» кластеров заменяют либо представителями элитного архива, 

либо случайно сгенерированными кандидатами [5]. 

Для оценки эффективности предложенный подход был протестирован на наборе 

CEC2017 – одном из наиболее признанных стандартов для оценки алгоритмов 

эволюционной оптимизации1. Рассматривались размерности 10, 30 и 50, а каждый 

алгоритм запускался 50 раз на каждой функции. Анализ включал сравнение средних и 

лучших значений, визуализацию динамики поиска по поколениям и статистическую 

проверку с использованием критерия Вилкоксона. Результаты показали, что интеграция 

модификации ДКОП повышает качество решений SelfCGA.  

Материалы и методы 

Рассматриваемая задача формулируется как поиск глобального минимума 

функции 𝑓(𝑥) в многомерном пространстве: 

 𝑚𝑖𝑛{𝑥 ∈ℝ𝐷}𝑓(𝑥), (1) 

где 𝐷 – размерность пространства поиска. Структура функции неизвестна, 

аналитическое описание отсутствует, а вычисление одного значения может быть 

сопряжено с высокой стоимостью. В таких условиях требуется алгоритм, способный 

вести стохастический поиск без априорной информации и сохранять баланс между 

исследованием новых областей и уточнением текущих перспективных решений. 

В работе рассматривается модификация самонастраивающегося ГА SelfCGA 

(Self-Configuring Genetic Algorithm). Базовый SelfCGA расширен за счет введения 

оператора равномерного кроссовера, который усиливает селекционное давление на этапе 

рекомбинации. Предложен подход к самонастройке ГА, основанный на вероятностных 

характеристиках операторов [6]. 

Предложенная модификация – ClusterSelfCGA (SelfCGA+ДКОП) – расширяет 

SelfCGA механизмом ДКОП, направленным на обработку фенотипов методом 

кластеризации. Пусть 𝑋 ∈ 𝑅𝑛×𝐷 – матрица фенотипов популяции из n индивидов. На 

каждом поколении выполняется кластеризация методом k-средних [7]: 

 𝑘  =   min(n_clusters,  𝑛), (2) 

после чего для каждого кластера оцениваются два показателя: количество индивидов Nk 

и средний фитнес Fk. Кластер считается «неперспективным», если одновременно 

выполняются условия: 

 𝑁𝑘 < 𝛼𝑁 ⋅ 𝑁, 𝐹𝑘 < 𝛼𝐹 ⋅ 𝐹̃, (3) 

где 𝑁 – средний размер кластера, а 𝐹̃ – медиана значений Fk по всем кластерам. В таких 

кластерах часть индивидов заменяется: в первую очередь используются особи из 

элитного архива, при нехватке – случайные генотипы. Замена выполняется с 

вероятностью replace_prob, при этом размер популяции остается неизменным. Механизм 

 
1 Wu G., Mallipeddi R., Suganthan P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on 

Constrained Real-Parameter Optimization. Technical Report. ResearchGate. URL: https://www.researchgate.net/ 

publication/317228117 (дата обращения: 15.11.2025). 

https://www.researchgate.net/publication/317228117
https://www.researchgate.net/publication/317228117
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элитизма реализуется через выделение k лучших индивидов по функции пригодности, 

которые сохраняются и обновляются в каждом поколении. 

Эксперименты проводились на наборе тестовых функций CEC2017 [8], 

включающем гибридные и композиционные задачи с множеством локальных 

экстремумов и переменной сложностью ландшафта. Рассматривались размерности 

D = 10, 30 и 50. Для каждой функции выполнялось по 50 независимых запусков. 

Параметры SelfCGA и его модификации подбирались, исходя из масштабируемости 

задачи: при D = 10 использовалось 200 поколений и популяция из 2000 индивидов; при 

D = 30 – 200 поколений и 4000 индивидов; при D = 50 – 400 поколений и 8000 индивидов. 

Сравнение алгоритмов выполнялось по средним и лучшим значениям функции 

пригодности, по траекториям эволюции значений по поколениям, а также с 

использованием критерия Вилкоксона для статистической проверки различий. 

Предложенный ClusterSelfCGA не изменяет структуру SelfCGA и может быть 

интегрирован в его цикл без модификации внутренней логики. 

Результаты 

В данном разделе проводится сравнительный анализ производительности 

классического ГА, его модификации с ДКОП (ГА+ДКОП), а также 

самонастраивающегося алгоритма SelfCGA и его расширения с использованием ДКОП 

(SelfCGA+ДКОП). В качестве тестового набора использовался CEC-2017, включающая 

30 функций различной сложности. Для каждого алгоритма выполнялось по 50 

независимых запусков на каждой из функций. 

Эксперименты проводились при различных размерностях пространства поиска. В 

Таблице 1 приведены параметры популяции и количество поколений, использованные 

для каждого алгоритма. 

Таблица 1 – Параметры экспериментальных исследований 

Table 1 – Parameters of experimental studies 

Алгоритм Размерность 𝑫 Число поколений Размер популяции 

ГА / ГА+ДКОП 10 200 2000 

SelfCGA / 

SelfCGA+ДКОП 
10 200 2000 

SelfCGA / 

SelfCGA+ДКОП 
30 200 4000 

SelfCGA / 

SelfCGA+ДКОП 
50 400 8000 

Результаты, представленные на Рисунке 1, демонстрируют поведение 

стандартного ГА (реализованного на основе библиотеки эволюционной оптимизации 

baumeva) и его модификации ГА+ДКОП при размерности D = 10 на функциях набора 

CEC2017. В обоих реализациях использовались турнирная селекция [9] и механизм 

элитизма [10]. 
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Рисунок 1 – Эволюция значения функции пригодности ГА и ГА+ДКОП при D = 10 

Figure 1 – Evolution of the fitness function value of GA and GA+DCOP at D = 10 

 

ДКОП ускоряет сходимость в начальной фазе эволюции и позволяет достигать 

меньших значений функции пригодности. На графиках видно, что использование ДКОП 

в составе ГА приводит к более раннему снижению значения функции пригодности по 

сравнению с базовой версией алгоритма. В большинстве функций кривая ГА+ДКОП 

достигает области стабильности за меньшее число поколений. Также наблюдается более 

узкая доверительная полоса усредненного значения функции пригодности по 

поколениям для модификации ГА+ДКОП, что указывает на более стабильную динамику 

поиска по сравнению со стандартным ГА. Данный эффект можно наблюдать по 

характеру зеленых областей, которые в ряде случаев более узкие относительно 

оранжевых. Аналогичные наблюдения применимы также и к алгоритму SelfCGA при 

D = 10, что подтверждается Рисунком 2. 



Моделирование, оптимизация и информационные технологии /  

Modeling, Optimization and Information Technology  

2026;14(2) 

https://moitvivt.ru 

 

  6 | 11 

 

Рисунок 2 – Динамика SelfCGA и SelfCGA+ДКОП при D = 10 

Figure 2 – Dynamics of SelfCGA and SelfCGA+DKOP at D = 10 

Анализ данных из Таблицы 2 показывает, что модификация ДКОП улучшила 

среднее значение функции пригодности для 28 из 30 задач. Почти во всех случаях также 

получены лучшие значения по отдельным запускам, что подтверждается низкими 

𝑝-values большинства тестов Уилкоксона. Лишь для функций 𝑓14 и 𝑓19 наблюдается 

обратная ситуация или отсутствие статистически значимых различий. 
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Таблица 2 – Сравнение значений функций пригодности ГА и ГА+ДКОП с размерностью D = 10 

(лучшее значение выделено жирным шрифтом) 

Table 2 – Comparison of the values of the fitness functions of GA and GA+DCOP with dimension 

D = 10 (the best value is highlighted in bold) 

Функ. Средн. ГА 
Средн. 

ГА+ДКОП 
Лучш. ГА 

Лучш. 

ГА+ДКОП 
p-value 

f1 18259680330,00 2305,75 12193893048,00 606,88 0,0022 

f2 188425951,20 3626767,79 14101212,26 978,34 0,0037 

f3 7560,04 2834,02 5381,84 514,12 0,0022 

f4 514,58 408,49 461,67 404,68 0,0022 

f5 555,48 512,69 543,77 505,80 0,0022 

f6 634,01 601,99 623,38 600,56 0,0022 

f7 837,93 728,67 810,91 719,71 0,0022 

f8 851,65 812,84 840,83 806,09 0,0022 

f9 1419,68 913,89 1169,00 900,80 0,0022 

f10 2351,35 1411,05 2124,14 1151,84 0,0022 

f11 1305,10 1112,05 1177,71 1106,23 0,0022 

f12 104024999,50 940203,40 36976398,89 5798,04 0,0022 

f13 269692,31 10846,95 31661,54 1399,33 0,0029 

f14 1748,59 1717,67 1460,61 1575,84 0,8753 

f15 6821,19 4419,92 1631,26 1519,15 0,0154 

f16 1770,87 1657,24 1669,79 1600,58 0,0029 

f17 1802,28 1721,26 1769,30 1702,52 0,0022 

f18 110399,24 9606,37 12754,05 1972,74 0,0022 

f19 6326,42 5828,06 1914,63 2059,07 0,6949 

f20 2110,77 2015,27 2080,65 2004,51 0,0022 

f21 2230,01 2226,98 2213,50 2201,06 0,0120 

f22 2390,95 2307,25 2321,56 2303,06 0,0022 

f23 2665,64 2614,82 2624,61 2609,58 0,0022 

f24 2649,72 2702,46 2577,01 2559,83 0,0036 

f25 3026,46 2945,29 2974,21 2922,88 0,0022 

f26 3226,96 3010,48 3115,84 2951,33 0,0022 

f27 3127,86 3089,62 3120,19 3081,58 0,0022 

f28 3319,99 3285,96 3282,33 3132,89 0,0342 

f29 3268,43 3171,42 3204,77 3144,75 0,0022 

f30 4079767,52 98792,64 1812117,93 4883,87 0,0022 

По данным Таблицы 3, модификация ДКОП дала более низкие средние значения 

функции пригодности для большинства задач, что отражается также на лучших 

отдельных запусках. Алгоритмы 𝑓2, 𝑓12 и 𝑓13 оказались исключением, где SelfCGA в 
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базовой форме сохранил преимущество, однако распределение значений для этих 

функций имеет вариативность, что также подтверждают значения 𝑝-value. 

Таблица 3 – Сравнение значений функций пригодности SelfCGA и SelfCGA+ДКОП с 

размерностью D = 10 (лучшие значения выделены жирным шрифтом) 

Table 3 – Comparison of the values of the fitness functions of SelfCGA and SelfCGA+DCOP with 

dimension D = 10 (the best values are highlighted in bold) 

Функ, 
Средн, 

SelfCGA 

Средн, 

SelfCGA+ДКОП 

Лучш, 

SelfCGA 

Лучш, 

SelfCGA+ДКОП 
p-value 

f1 280,62 183,47 104,98 104,97 0,0293 

f2 4163,99 4861,15 1050,91 203,57 0,0763 

f3 487,56 308,42 303,83 300,11 0,0007 

f4 406,66 405,89 405,90 400,74 0,0206 

f5 510,40 505,22 503,98 500,99 0,0040 

f6 600,16 600,01 600,00 600,00 0,0006 

f7 719,33 714,00 712,13 710,94 0,0019 

f8 809,70 804,53 804,97 800,99 0,0001 

f9 900,00 900,00 900,00 900,00 0,0065 

f10 1357,17 1032,66 1021,82 1000,25 0,0000 

f11 1106,68 1102,61 1103,06 1100,94 0,0001 

f12 12435,56 20640,04 5373,09 2437,83 0,0859 

f13 6651,76 7932,13 1331,77 1361,03 0,8519 

f14 1501,06 1455,49 1406,19 1403,32 0,2043 

f15 2719,73 2120,62 1502,03 1500,37 0,0175 

f16 1617,69 1600,87 1600,47 1600,41 0,0025 

f17 1712,84 1701,56 1700,10 1700,45 0,0003 

f18 10037,20 4003,75 1838,72 2533,35 0,0025 

f19 2679,87 2475,37 1902,72 1903,54 0,0054 

f20 2004,95 2001,13 2000,08 2000,38 0,0304 

f21 2234,30 2213,30 2200,00 2200,00 0,0054 

f22 2300,13 2292,42 2300,00 2218,08 0,0110 

f23 2609,51 2606,19 2604,35 2602,60 0,0040 

f24 2663,77 2629,82 2500,00 2400,00 0,0056 

f25 2945,43 2925,36 2936,07 2899,46 0,0251 

f26 2905,15 2900,01 2900,00 2900,00 0,0086 

f27 3092,85 3092,09 3087,33 3087,36 0,0539 

f28 3184,07 3154,87 3100,00 3100,00 0,0068 

f29 3172,46 3146,01 3138,51 3134,81 0,0006 

f30 333959,65 39514,85 10264,70 5653,84 0,0045 
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Для интерпретации полученных результатов необходимо учитывать структуру 

тестового набора CEC2017. В него входят функции таких типов, как унимодальные 

(f1–f2), многоэкстремальные (f3–f10), гибридные (f11–f20) и композиционные функции 

(f21–f30), характеризующиеся сложным, неоднородным рельефом и большим числом 

локальных экстремумов. Анализ результатов вычислительных экспериментов 

показывает, что влияние ДКОП проявляется по-разному в зависимости от класса 

функций. На унимодальных функциях преимущество SelfCGA+ДКОП выражается 

главным образом в ускорении выхода на область стабильных значений, тогда как 

конечное качество решений сопоставимо с базовой версией алгоритма. На 

многоэкстремальных функциях и функциях со сложным ландшафтом (f3–f10, f11–f20) 

эффект ДКОП становится более существенным: наблюдается как более быстрое 

снижение значения функции пригодности, так и меньшая вариативность результатов 

между независимыми запусками, что указывает на снижение риска преждевременной 

сходимости. Наиболее заметное преимущество модифицированного алгоритма 

проявляется на композиционных функциях (f21–f25), где сочетание кластеризации 

фенотипов и выборочной замены индивидов позволяет эффективнее перераспределять 

вычислительные ресурсы между перспективными областями пространства поиска. При 

увеличении размерности с 10 до 50 различия между алгоритмами усиливаются, что 

свидетельствует о положительном влиянии ДКОП на масштабируемость SelfCGA. 

Заключение 

Проведенное исследование показало, что включение ДКОП в структуру SelfCGA 

способствует улучшению результатов оптимизации на большинстве функций набора 

CEC2017. Механизм кластеризации фенотипов и выборочной замены индивидов 

обеспечивает сохранение разнообразия и устойчивую сходимость даже при увеличении 

размерности пространства. При сравнении средних и лучших значений наблюдается 

преимущество модифицированного алгоритма. Метод не требует дополнительной 

настройки параметров и может быть интегрирован в другие эволюционные алгоритмы. 

Полученные результаты подтверждают перспективность предложенного подхода и 

обосновывают дальнейшее развитие адаптивных механизмов поиска. 
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