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Резюме. При фильтрации навигационных сигналов используются методы нелинейного 
оценивания, качество которых зависит от точности выбранных моделей состояния и 
наблюдения. В ситуациях, когда параметры моделей неизвестны или изменяются во время 
наблюдения, приходится прибегать к применению адаптивных алгоритмов фильтрации. 
Необходимость использования более сложных подходов определяется тем, насколько 
отклонение того или иного параметра влияет на результат фильтрации. Для оценки качества 
фильтрации, как правило, используют такие критерии, как выигрыш в отношении сигнал-шум 
или среднеквадратическая ошибка, которые не предназначены для определения влияния 
величины отклонений параметров от их истинных значений на дисперсию ошибки оценивания, 
в отличие от такого показателя качества, как чувствительность. В статье рассматривается анализ 
чувствительности фильтрации при воздействии белого шума к изменению параметров 
наблюдения и состояния для фильтров Калмана различных порядков точности и фильтра, 
оптимального по критерию максимума апостериорной плотности вероятности. Моделирование 
производится численными методами. Приводится вывод уравнения чувствительности в большом 
для нелинейного фильтра Калмана в аналитическом виде. В результате получены зависимости 
чувствительности от величины рассогласования истинных и предполагаемых моделей, а также 
устойчивость алгоритмов фильтрации к этому рассогласованию. Полученные результаты можно 
использовать при формировании требований к допустимым отклонениям параметров модели и 
проверки качества фильтрации в условиях их априорной неопределенности. 

Ключевые слова: фильтр Калмана, стохастические дифференциальные уравнения, 
чувствительность, радионавигационный сигнал, белый шум. 
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Abstract. Nonlinear estimation methods are used for filtering navigation signals, the quality of which 
depends on the accuracy of the chosen state and observation models. In situations where model 
parameters are unknown or change during observation, it is necessary to resort to adaptive filtering 
algorithms. The need for more complex approaches is determined by how much the deviation of a 
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particular parameter affects the filtering result. To assess the quality of filtering, criteria such as signal-
to-noise ratio gain or root mean square error are typically used; however, these are not intended to 
determine the influence of the magnitude of parameter deviations from their true values on the 
estimation error variance, unlike a quality indicator such as sensitivity. The article discusses the analysis 
of filtering sensitivity to changes in observation and state parameters under the influence of white noise 
for Kalman filters of various accuracy orders and a filter optimal by the criterion of maximum a 
posteriori probability density. Simulation is carried out by numerical methods. The derivation of the 
large-scale sensitivity equation for the nonlinear Kalman filter in analytical form is presented. As a 
result, dependencies of sensitivity on the magnitude of the discrepancy between the true and assumed 
models were obtained, as well as the stability of the filtering algorithms to this discrepancy. The results 
can be used to formulate requirements for permissible model parameter deviations and to check the 
filtering quality under conditions of their a priori uncertainty. 

Keywords: Kalman filter, stochastic differential equations, sensitivity, radio navigation signal, white 
noise. 
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Введение 
Оптимальность и качество фильтрации определяется выбором математической 

модели, адекватной исследуемым сигналам. На практике зачастую не хватает априорной 
информации как о точных статистических характеристиках параметров сигналов и 
шумов, так и о соотношениях, описывающих связи сигналов состояния и наблюдения. 
Даже применение критериев согласия для валидации модели состояния не позволяет в 
полной мере оценить, насколько идеализированная форма представления сигнала с 
заранее известной плотностью способна отразить его реальные свойства. Из проблемы 
выбора адекватных моделей вытекает необходимость в «настройке», оптимизации 
параметров фильтра, осуществляемая, например, посредством адаптивной фильтрации. 
Для анализа ошибок и оценки целесообразности использования более сложных методов 
обработки можно опираться не только на непосредственные показатели качества 
фильтрации (такие, как отношение сигнал-шум или дисперсия оценки), но и на матрицы 
чувствительности. Матрицы чувствительности позволяют описать влияние разницы 
между предполагаемыми и истинными значениями параметров сигнала наблюдения и 
состояния на качество фильтрации, характеризуемое ковариационной матрицей ошибок 
оценивания. В классической литературе по теме1 [1] разработаны и представлены в 
аналитическом виде алгоритмы оценки чувствительности линейной фильтрации и 
сглаживания, которые исследованы в [2, 3].  

В данной работе для анализа мы ограничимся рассмотрением чувствительности, 
рассчитанной численно. Используемые нами методы фильтрации пригодны для 
обработки параметров, описываемых стохастическими дифференциальными 
уравнениями (СДУ) произвольного вида, что требует разработки универсального 
подхода к выведению уравнений чувствительности и является отдельной задачей, 
прикладной смысл которой зависит, как минимум, от степени общности получаемых 
выражений. В работе предложен способ получения уравнений чувствительности для 
нелинейного фильтра Калмана. 

 
1 Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем. Москва: 
Радио и связь; 2004. 608 с. 
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Материалы и методы 

Рассмотрим навигационный сигнал 𝑠𝑠(𝑡𝑡), распространяющийся в непрерывном 
канале связи, описываемый гармонической функцией: 

 𝑠𝑠(𝑡𝑡) = 𝐴𝐴 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠( (𝜔𝜔 − 𝜔𝜔𝑑𝑑(𝑡𝑡)) ⋅ (𝑡𝑡 − 𝜏𝜏з(𝑡𝑡)) + 𝜙𝜙(𝑡𝑡)) + 𝑣𝑣(𝑡𝑡), (1) 

где 𝐴𝐴 – постоянная амплитуда сигнала, 𝜔𝜔 – частота сигнала навигационной системы, 
𝜔𝜔𝑑𝑑(𝑡𝑡) – доплеровский сдвиг частоты, 𝜏𝜏з(𝑡𝑡) – задержка распространения сигнала, 𝜑𝜑(𝑡𝑡) – 
фаза сигнала, 𝑣𝑣(𝑡𝑡) – белый гауссов шум наблюдения с нулевым средним.  

Доплеровский сдвиг, задержка и фаза являются случайными навигационными 
параметрами, подлежащими оценке. Задачей фильтрации является отделение полезной 
части сигнала 𝑠𝑠(𝑡𝑡) от шума 𝑣𝑣(𝑡𝑡), то есть оценка случайных параметров на основе 
априорных данных об их вероятностных характеристиках. Введем обобщенный вектор 
состояния: 

 𝑥𝑥(𝑡𝑡) = �
𝜏𝜏з(𝑡𝑡)
𝜔𝜔𝑑𝑑(𝑡𝑡)
𝜙𝜙(𝑡𝑡)

�. (2) 

В дальнейшем подразумевается, что фильтрация осуществляется относительно 
вектора 𝑥𝑥. Каждая из его составляющих имеет заданную плотность вероятности, 
описываемую соответствующим СДУ, которое может быть получено из уравнений 
Фоккера-Планка-Колмогорова [4, 5]. Так, СДУ гауссовского распределения для фазы 
сигнала 𝜑𝜑(𝑡𝑡) (СДУ для доплеровской частоты 𝜔𝜔𝑑𝑑(𝑡𝑡) выглядит аналогично) имеет вид: 

 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝜙𝜙(𝑡𝑡)
𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ √2𝜎𝜎
�𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤𝜙𝜙(𝑡𝑡), (3) 

где 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 – интервал корреляции, 𝜎𝜎 – среднеквадратическое отклонение. 
СДУ равномерного распределения для описания задержки 𝜏𝜏з (аналогично 

возможно описание начальной фазы): 

 𝑑𝑑𝜏𝜏з(𝑡𝑡)
𝑑𝑑𝑑𝑑

= (𝑏𝑏−𝑎𝑎)2

𝜋𝜋2𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
+ 𝛿𝛿(𝜏𝜏з(𝑡𝑡)−𝑎𝑎)−𝛿𝛿(𝜏𝜏з(𝑡𝑡)+𝑎𝑎)

𝜃𝜃(𝜏𝜏з(𝑡𝑡)−𝑎𝑎)−𝜃𝜃(𝜏𝜏з(𝑡𝑡)+𝑎𝑎)
+ 𝑏𝑏−𝑎𝑎

𝜋𝜋 � 2
𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤𝜙𝜙(𝑡𝑡), (4) 

где 𝑏𝑏, 𝑎𝑎 – границы определения задержки (параметры равномерного распределения), 𝛿𝛿 и 
𝜃𝜃 – соответственно функции Дирака и Хэвисайда. Данное выражение можно заменить 
аппроксимацией белым шумом [5]. 

В идеальном случае все коэффициенты СДУ (3)–(4) имеют точные значения и 
корректно описывают параметры сигнала. Используя (2), составим обобщенное 
векторное уравнение состояния: 

 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑡𝑡) + 𝑔𝑔(𝑥𝑥(𝑡𝑡), 𝑡𝑡) ⋅ 𝑤𝑤(𝑡𝑡), (5) 

где 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑡𝑡),𝑔𝑔(𝑥𝑥(𝑡𝑡), 𝑡𝑡) – коэффициенты СДУ (3)–(4) размерности [3×1], 𝑤𝑤(𝑡𝑡) – белый 
гауссовский шум состояния с нулевым средним, описываемый диагональной матрицей 
интенсивностей 𝛹𝛹𝑤𝑤(𝑡𝑡) размерности [3×3]. Для моделей в виде (3)–(5) в [6] были 
получены уравнения фильтрации при точном знании параметров указанных моделей. 

Аналогично запишем «истинный» сигнал наблюдения, предполагающий 
корректную модель наблюдаемого сигнала:  

 𝑠𝑠(𝑡𝑡) = ℎ(𝑥𝑥(𝑡𝑡), 𝑡𝑡) + 𝑣𝑣(𝑡𝑡), (6) 
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где ℎ(𝑥𝑥(𝑡𝑡), 𝑡𝑡) – предполагаемый скалярный коэффициент фильтрации, зависящий от 
векторного аргумента в соответствии с выражением (1); 𝑣𝑣(𝑡𝑡) – шум наблюдения; 𝛹𝛹𝑣𝑣(𝑡𝑡) – 
интенсивность шума наблюдения. 

Теперь перейдем к рассмотрению случая, когда один или несколько параметров 
модели отличаются от истинных: будем называть их «предполагаемыми» параметрами. 
Уравнение состояния в форме СДУ при предполагаемых параметрах описывается 
аналогично (5): 

 𝑑𝑑𝒙̄𝒙(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑥̄𝑥(𝑡𝑡), 𝑡𝑡) + 𝑔̄𝑔(𝑥̄𝑥(𝑡𝑡), 𝑡𝑡) ⋅ 𝑤̄𝑤(𝑡𝑡), (7) 

где 𝑥̅𝑥 – предполагаемое значение вектора 𝑥𝑥; 𝑓𝑓,̅ 𝑔̅𝑔 – предполагаемые коэффициенты СДУ, 
𝑤𝑤�  – шум наблюдения, описываемый предполагаемой матрицей интенсивности 𝛹𝛹�𝑤𝑤(𝑡𝑡) 
размерностью [3×3]. 

Модель наблюдаемого сигнала (1) при предполагаемых параметрах: 

 𝑠̄𝑠(𝑡𝑡) = ℎ̄(𝑥̄𝑥(𝑡𝑡), 𝑡𝑡) + 𝑣̄𝑣(𝑡𝑡), (8) 

где ℎ�,  𝑣𝑣�   – предполагаемый коэффициент фильтрации и шум наблюдения с 
интенсивностью 𝛹𝛹�𝑣𝑣(𝑡𝑡). 

Ошибка оценивания или ошибка фильтрации при неточных параметрах 
определяется как разность между истинным параметром фильтрации и предполагаемым 
результатом фильтрации: 

 𝑥𝑥�(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝑥̄𝑥�(𝑡𝑡),  

где 𝑥𝑥� – отфильтрованное значение 𝑥̅𝑥 при предполагаемых параметрах (7)–(8). 
При вычислении оценок 𝑥𝑥� в фильтре Калмана используется условная дисперсия 

ошибки оценивания (ковариация ошибок): 

 𝑉𝑉𝑥𝑥�(𝑡𝑡) = 𝑣𝑣𝑣𝑣𝑣𝑣{ 𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)|𝑠𝑠(𝑡𝑡)} = ∫ [𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)]∞
−∞ [𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)]𝑇𝑇𝑝𝑝(𝑥𝑥(𝑡𝑡)|𝑠𝑠(𝑡𝑡))𝑑𝑑𝑑𝑑(𝑡𝑡), (9) 

где 𝑣𝑣𝑣𝑣𝑣𝑣 – ковариация, 𝑝𝑝(𝑥𝑥(𝑡𝑡)|𝑠𝑠(𝑡𝑡)) – условная плотность вероятности. 
Чувствительность в большом может быть описана как отношение разности между 

истинной и предполагаемой дисперсиями ошибки оценивания к отклонению значения 
параметра от истинного: 

 Г(𝑡𝑡) = 𝑡𝑡𝑡𝑡(𝑉𝑉𝑥𝑥�(𝑡𝑡))−𝑡𝑡𝑡𝑡(𝑉̄𝑉𝑥𝑥�(𝑡𝑡))
𝛥𝛥𝛥𝛥

, (10) 

где Г(𝑡𝑡) – чувствительность, ∆𝑏𝑏 = 𝑏𝑏 − 𝑏𝑏� – разница между истинным значением 
параметра фильтрации 𝑏𝑏 и его предполагаемым значением 𝑏𝑏�; 𝑉𝑉𝑥𝑥�(𝑡𝑡) – действительная 
ковариационная матрица ошибок оценивания 𝑥𝑥�, соответствующая изменению параметра 
∆𝑏𝑏 = 0; 𝑉𝑉�𝑥𝑥�(𝑡𝑡) – предполагаемая ковариационная матрица ошибок оценивания 𝑥𝑥�; 𝑡𝑡𝑡𝑡(∙) – 
след матрицы. 

Строго говоря, различают чувствительность в малом и большом. Матричная 
чувствительность в малом является дифференциальной версией чувствительности в 
большом и используется при малых отклонениях от истинных параметров. Она может 
быть вычислена путем предельного перехода ∆𝑏𝑏 → 0: 

 𝛾𝛾(𝑡𝑡) = 𝜕𝜕𝑉𝑉𝑥𝑥�
𝜕𝜕𝑏𝑏

|𝑏𝑏=𝑏̄𝑏. (11) 

В [1] приведен вывод алгоритма вычисления чувствительности для линейного 
уравнения состояния, основанный на выражении дисперсии при помощи решения 
дифференциального уравнения относительно 𝑥𝑥(𝑡𝑡) через матрицу переходов D (t, τ): 
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 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑔𝑔(𝑡𝑡) ⋅ 𝑤𝑤(𝑡𝑡),  

 𝑥𝑥(𝑇𝑇) = 𝐷𝐷(𝑇𝑇, 0)𝑥𝑥(0) + ∫ 𝐷𝐷(𝑇𝑇, 𝜏𝜏)𝑇𝑇
0 𝑔𝑔(𝑡𝑡) ⋅ 𝑤𝑤(𝑡𝑡)𝑑𝑑𝑑𝑑.  

Линейность модели позволяет представить истинную матрицу ковариаций через 
уравнение Риккати [1, 4] при известных ∆𝑏𝑏 и 𝑏𝑏�.  

В литературе встречаются как аналитические, так и численные подходы к 
решению задачи чувствительности. Например, в [7] приводится частный случай оценки 
так называемой прямой функции чувствительности – чувствительности ошибки 
оценивания 𝑥𝑥�, которая определяется непосредственно по отношению к неточно 
известным интенсивностям шумов 𝛹𝛹𝑣𝑣 и 𝛹𝛹𝑤𝑤: 𝑠𝑠𝑣𝑣(𝑡𝑡) = 𝜕𝜕𝑥𝑥�(𝑡𝑡)

𝜕𝜕𝛹𝛹𝑣𝑣(𝑡𝑡)
, 𝑠𝑠𝑤𝑤(𝑡𝑡) = 𝜕𝜕𝑥𝑥�(𝑡𝑡)

𝜕𝜕𝛹𝛹𝑤𝑤(𝑡𝑡)
. Затем строится 

расширенный вектор ошибки оценивания за счет включения в него взвешенных функций 
чувствительности для увеличения устойчивости фильтра к вариациям интенсивностей 
шумов. Этот метод и выведенные формулы, однако, справедливы для линейной 
фильтрации и являются только частным решением. В большинстве случаев (например, 
[8, 9]) для анализа чувствительности при нелинейных моделях используются численные 
методы. 

Рассмотрим в качестве примера нелинейного алгоритма расширенный фильтр 
Калмана 1-го порядка точности и выведем выражения для оценки чувствительности, 
которые могли бы быть применены к любым параметрам фильтрации.  

Уравнение фильтрации Калмана 1-го порядка точности в общем виде для 
предполагаемых параметров (то есть оценка, которую мы получаем в действительности 
по «неточной» модели) имеет вид: 

 𝑑𝑑𝑥̄𝑥�(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

𝑉̄𝑉𝑥𝑥�(𝑡𝑡) + 𝑉̄𝑉𝑥𝑥�(𝑡𝑡)
𝜕𝜕ℎ̄𝑇𝑇(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

𝛹̄𝛹𝑣𝑣−1(𝑡𝑡){𝑠𝑠(𝑡𝑡) − ℎ̄(𝑥̄𝑥�, 𝑡𝑡)}. (12) 

Предполагаемая ковариационная матрица ошибок: 

 

𝑑𝑑𝑉̄𝑉𝑥𝑥�(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

𝑉̄𝑉𝑥𝑥�(𝑡𝑡) + 𝑉̄𝑉𝑥𝑥�(𝑡𝑡)
𝜕𝜕𝑓̄𝑓𝑇𝑇(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

+ 𝑔̄𝑔(𝑥̄𝑥�, 𝑡𝑡)𝛹̄𝛹𝑤𝑤(𝑡𝑡)𝑔̄𝑔𝑇𝑇(𝑥̄𝑥�, 𝑡𝑡) −

− 𝑉̄𝑉𝑥𝑥�(𝑡𝑡)
𝜕𝜕ℎ̄𝑇𝑇(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

𝛹̄𝛹𝑣𝑣−1(𝑡𝑡) 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

𝑉̄𝑉𝑥𝑥�(𝑡𝑡).
 (13) 

Теперь необходимо найти выражение для истинной ковариационной матрицы, 
чтобы затем подставить ее в выражение для чувствительности (10) или (11). Истинные 
параметры отличаются от используемых в фильтре на величину рассогласования Δ: 

 
𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥̄𝑥, 𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥, 𝑡𝑡)
ℎ(𝑥𝑥, 𝑡𝑡) = ℎ̄(𝑥̄𝑥, 𝑡𝑡) + 𝛥𝛥ℎ(𝑥̄𝑥, 𝑡𝑡)
𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑔̄𝑔(𝑥̄𝑥, 𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥, 𝑡𝑡)

, (14) 

 
𝛹𝛹𝑤𝑤(𝑥𝑥, 𝑡𝑡) = 𝛹̄𝛹𝑤𝑤(𝑥̄𝑥, 𝑡𝑡) + 𝛥𝛥𝛹𝛹𝑤𝑤(𝑥̄𝑥, 𝑡𝑡)
𝛹𝛹𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝛹̄𝛹𝑣𝑣(𝑥̄𝑥, 𝑡𝑡) + 𝛥𝛥𝛹𝛹𝑣𝑣(𝑥̄𝑥, 𝑡𝑡)

.  

Хотя мы не можем вычислить значения функций 𝑓𝑓 и ℎ в истинной точке 𝑥𝑥, потому 
что она неизвестна, возможно найти приближенное значение 𝑓𝑓 и ℎ, если разложить их в 
ряд Тейлора около точки, являющейся оценкой 𝑥̅𝑥�, опуская члены высоких порядков. 
Благодаря данному преобразованию были получены формулы для предполагаемой 
ковариации ошибки (12)–(13). Линеаризуем функции 𝑓𝑓 и ℎ с учетом рассогласований (14): 
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𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥�, 𝑡𝑡) + 𝜕𝜕𝑓𝑓(𝑥𝑥�,𝑡𝑡)

𝜕𝜕𝑥𝑥�
(𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)) = 𝑓̄𝑓(𝑥̄𝑥�, 𝑡𝑡) + 𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
(𝑥𝑥(𝑡𝑡) − 𝑥̄𝑥�(𝑡𝑡)) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡) =

= 𝑓̄𝑓(𝑥̄𝑥�, 𝑡𝑡) + 𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

(𝑥𝑥�(𝑡𝑡)) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡).
 (15) 

 ℎ(𝑥𝑥, 𝑡𝑡) = ℎ(𝑥𝑥�, 𝑡𝑡) + 𝜕𝜕ℎ(𝑥𝑥�,𝑡𝑡)
𝜕𝜕𝑥𝑥�

(𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)) = ℎ̄(𝑥̄𝑥�, 𝑡𝑡) + 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

(𝑥𝑥�(𝑡𝑡)) + 𝛥𝛥ℎ(𝑥̄𝑥�, 𝑡𝑡). (16) 

Тогда ошибку фильтрации (ее приращение) можно раскрыть c учетом 
𝑠𝑠(𝑡𝑡) = ℎ�(𝑥̅𝑥(𝑡𝑡), 𝑡𝑡) + 𝑣̅𝑣(𝑡𝑡):  

 𝑥𝑥�(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡) − 𝑑𝑑𝑥̄𝑥�(𝑡𝑡) = 𝑓𝑓(𝑥𝑥, 𝑡𝑡) + 𝑓𝑓(𝑥̄𝑥�, 𝑡𝑡) − 

 − 𝑉̄𝑉𝑥𝑥�
𝜕𝜕ℎ̄𝑇𝑇�𝑥̄𝑥�,𝑡𝑡�
𝜕𝜕𝑥̄𝑥�(𝑡𝑡) 𝛹̄𝛹𝑣𝑣−1(𝑡𝑡)�ℎ̄(𝑥̄𝑥�, 𝑡𝑡) + 𝜕𝜕ℎ̄�𝑥̄𝑥�,𝑡𝑡�

𝜕𝜕𝑥̄𝑥�(𝑡𝑡) 𝑥𝑥�(𝑡𝑡) + 𝛥𝛥ℎ(𝑥̄𝑥�, 𝑡𝑡) − ℎ̄(𝑥̄𝑥�, 𝑡𝑡)�]𝑑𝑑𝑑𝑑 + (17) 

 + 𝑔𝑔(𝑥𝑥, 𝑡𝑡)𝑤𝑤(𝑡𝑡)𝑑𝑑𝑑𝑑 − 𝑉̄𝑉𝑥𝑥�
𝜕𝜕ℎ̄𝑇𝑇(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

𝛹̄𝛹𝑣𝑣−1(𝑡𝑡)𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑.  
В дальнейшем будем использовать замену для коэффициента усиления фильтра: 

 𝐾̄𝐾 = 𝑉̄𝑉𝑥𝑥�
𝜕𝜕ℎ̄𝑇𝑇(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�(𝑡𝑡)

𝛹̄𝛹𝑣𝑣−1(𝑡𝑡). (18) 

Используя приближения первого порядка для 𝑓𝑓(𝑥𝑥, 𝑡𝑡) и ℎ(𝑥𝑥, 𝑡𝑡) (15), (14), после 
подстановки получаем: 

 𝑑𝑑𝑥𝑥�(𝑡𝑡) = ��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� 𝑥𝑥�(𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡) + 𝑔𝑔(𝑥𝑥, 𝑡𝑡)𝑤𝑤(𝑡𝑡) − 𝐾̄𝐾𝑣𝑣(𝑡𝑡) − 𝐾̄𝐾𝛥𝛥ℎ(𝑥̄𝑥�, 𝑡𝑡)�𝑑𝑑𝑑𝑑, (19) 

где 𝑓𝑓(𝑥𝑥, 𝑡𝑡) − 𝑓𝑓(̅𝑥̅𝑥�, 𝑡𝑡) = 𝜕𝜕𝑓̅𝑓�𝑥̅𝑥�,𝑡𝑡�
𝜕𝜕𝑥̅𝑥�

𝑥𝑥�(𝑡𝑡) + ∆𝑓𝑓(𝑥̅𝑥�, 𝑡𝑡) (15). 
Истинная ковариация ошибки оценивания: 

 𝑉𝑉𝑥𝑥� = 𝐸𝐸[𝑥𝑥(𝑡𝑡)𝑥𝑥𝑇𝑇(𝑡𝑡)].  

где 𝐸𝐸[∙] – оператор математического ожидания. 
Здесь необходимо сделать оговорку: в отличие от приведенного выше выражения, 

в уравнении (13) ковариация ошибок по определению является условной (9), поэтому 
для вывода истинной ковариации следовало бы придерживаться подхода, аналогичного 
предложенному в [1], однако даже в [1] при окончательной записи уравнений для 𝑉𝑉𝑥𝑥� 
автор приходит к безусловным оценкам, что демонстрирует правомерность 
использования в отношении как предполагаемой, так и истинной ковариации ошибок 
понятия «средняя ковариация» и разрешает противоречия, которые могли бы возникнуть 
при выводе уравнений чувствительности в большом, где из «безусловной» ковариации 
будет вычитаться «условная». Рассмотрим произведение 𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡). Если считать, что 
оно является процессом Ито [1], то можно записать формулу Ито относительно 
переменной 𝑥𝑥�(𝑡𝑡): 

 𝑑𝑑(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡)) = [𝜕𝜕
2(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))
𝜕𝜕𝑥𝑥�2(𝑡𝑡)

+ 𝜕𝜕(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))𝑇𝑇

𝜕𝜕𝑥𝑥�(𝑡𝑡)
��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)� +  

+ 1
2
𝑡𝑡𝑡𝑡 �𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇 𝜕𝜕

2(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))
𝜕𝜕𝑥𝑥�2(𝑡𝑡)

�]𝑑𝑑𝑑𝑑 + 𝜕𝜕(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))𝑇𝑇

𝜕𝜕𝑥𝑥�(𝑡𝑡)
𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹𝛹𝛹, 

где 𝐺𝐺(𝑥𝑥�) = [𝑔𝑔(𝑥𝑥),−𝐾𝐾�], 𝛹𝛹 = �𝛹𝛹𝑤𝑤 0
0 𝛹𝛹𝑣𝑣

�, 𝑑𝑑𝑑𝑑 = �𝑑𝑑𝑑𝑑 = 𝑤𝑤 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑣𝑣 ∙ 𝑑𝑑𝑑𝑑 � – винеровские процессы. 

Первое слагаемое в квадратных скобках равно нулю. Второе слагаемое:   
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 𝜕𝜕(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))𝑇𝑇

𝜕𝜕𝑥𝑥�(𝑡𝑡)
��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)� =  

 = ��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)� 𝑥𝑥�𝑇𝑇(𝑡𝑡) + 𝑥𝑥�(𝑡𝑡)��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)�
𝑇𝑇

.  

Матричное произведение в третьем слагаемом равно: 

 𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇 = [𝑔𝑔(𝑥𝑥), 𝐾̄𝐾] �𝛹𝛹𝑤𝑤 0
0 𝛹𝛹𝑣𝑣

� �𝑔𝑔(𝑥𝑥)
𝐾̄𝐾

� = 𝑔𝑔(𝑥𝑥)𝛹𝛹𝑤𝑤𝑔𝑔𝑇𝑇(𝑥𝑥) + 𝐾̄𝐾𝛹𝛹𝑣𝑣𝐾̄𝐾𝑇𝑇.   

Рассматривая отдельный ij-й элемент гессиана в третьем слагаемом и пользуясь 
фильтрующим свойством дельта-функции (символа Кронекера 𝛿𝛿), при 
последовательном взятии частных производных: 

 𝜕𝜕2(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥�𝑘𝑘(𝑡𝑡)𝜕𝜕𝑥𝑥�𝑙𝑙(𝑡𝑡)

= 𝜕𝜕
𝜕𝜕𝑥𝑥�𝑙𝑙(𝑡𝑡)

�𝑥𝑥�𝑗𝑗(𝑡𝑡)𝛿𝛿𝑖𝑖𝑖𝑖 + 𝑥𝑥�𝑖𝑖(𝑡𝑡)𝛿𝛿𝑗𝑗𝑗𝑗� = 𝛿𝛿𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗.  

С учетом этого вычислим след матрицы для отдельного элемента гессиана: 

 𝑡𝑡𝑡𝑡 �𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇 𝜕𝜕
2(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))𝑇𝑇

𝜕𝜕𝑥𝑥�2(𝑡𝑡)
�
𝑖𝑖𝑖𝑖

= ∑ (𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇)𝑘𝑘𝑘𝑘𝑛𝑛
𝑘𝑘=𝑙𝑙=1

𝜕𝜕2(𝑥𝑥�𝑖𝑖(𝑡𝑡)𝑥𝑥�𝑗𝑗
𝑇𝑇(𝑡𝑡))

𝜕𝜕𝑥𝑥�𝑘𝑘(𝑡𝑡)𝜕𝜕𝑥𝑥�𝑙𝑙(𝑡𝑡)
=  

 = ∑ (𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇)𝑘𝑘𝑘𝑘𝑛𝑛
𝑘𝑘=𝑙𝑙=1 �𝛿𝛿𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗� = ∑ (𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇)𝑘𝑘𝑘𝑘𝑛𝑛

𝑘𝑘=1 𝛿𝛿𝑖𝑖𝑖𝑖 +
+∑ (𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇)𝑖𝑖𝑖𝑖𝑛𝑛

𝑙𝑙=1 𝛿𝛿𝑗𝑗𝑗𝑗 = 
= (𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇)𝑖𝑖𝑖𝑖 + (𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇)𝑗𝑗𝑗𝑗 = 2(𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇)𝑖𝑖𝑖𝑖. 

Таким образом, третий член будет равен: 

 1
2
𝑡𝑡𝑡𝑡 �𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇 𝜕𝜕

2(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡))𝑇𝑇

𝜕𝜕𝑥𝑥�(𝑡𝑡)
� = 𝐺𝐺(𝑥𝑥�)𝛹𝛹𝛹𝛹(𝑥𝑥�)𝑇𝑇 = 𝑔𝑔(𝑥𝑥)𝛹𝛹𝑤𝑤𝑔𝑔𝑇𝑇(𝑥𝑥) + 𝐾̄𝐾𝛹𝛹𝑣𝑣𝐾̄𝐾𝑇𝑇.  

В вычислении четвертого слагаемого необходимости нет, поскольку его 
математическое ожидание равно нулю.  

В итоге для 𝑑𝑑�𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡)� получается выражение: 

 𝑑𝑑(𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡)) = [��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)�𝑥𝑥�𝑇𝑇(𝑡𝑡) +  

 + 𝑥𝑥�(𝑡𝑡) ��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)�
𝑇𝑇

+ 𝑔𝑔(𝑥𝑥, 𝑡𝑡)𝛹𝛹𝑤𝑤(𝑡𝑡)𝑔𝑔𝑇𝑇(𝑥𝑥, 𝑡𝑡) + 𝐾̄𝐾𝛹𝛹𝑣𝑣𝐾̄𝐾𝑇𝑇]𝑑𝑑𝑑𝑑. 

Теперь необходимо найти математическое ожидание от полученного выражения 
и перенести множитель 𝑑𝑑𝑑𝑑 в числитель левой части уравнения. Третье и четвертое 
слагаемые не содержат случайных величин, поэтому их можно сразу вынести за знак 
математического ожидания E: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐸𝐸[𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡)] = 𝐸𝐸[��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)� 𝑥𝑥�𝑇𝑇(𝑡𝑡) +  

 + 𝑥𝑥�(𝑡𝑡) ��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)�
𝑇𝑇

] + 𝑔𝑔(𝑥𝑥�, 𝑡𝑡)𝛹𝛹𝑤𝑤(𝑡𝑡)𝑔𝑔𝑇𝑇(𝑥𝑥�, 𝑡𝑡) + 𝐾̄𝐾𝛹𝛹𝑣𝑣𝐾̄𝐾𝑇𝑇. 

Вынося за знак математического ожидания все члены, не содержащие 𝑥𝑥�(𝑡𝑡), и 
используя свойство операции транспонирования (𝐴𝐴𝐴𝐴)𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇, получим: 

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝐸𝐸[𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡)] = �𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
� 𝐸𝐸[𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡)] + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)𝐸𝐸[𝑥𝑥�𝑇𝑇(𝑡𝑡)] +  
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 + 𝐸𝐸[𝑥𝑥�(𝑡𝑡)𝑥𝑥�𝑇𝑇(𝑡𝑡)] �𝜕𝜕𝑓̄𝑓�𝑥̄𝑥
�,𝑡𝑡�

𝜕𝜕𝑥̄𝑥�
− 𝐾̄𝐾 𝜕𝜕ℎ̄�𝑥̄𝑥�,𝑡𝑡�

𝜕𝜕𝑥̄𝑥�
�
𝑇𝑇

+  

+ 𝐸𝐸[𝑥𝑥�𝑇𝑇(𝑡𝑡)]𝛥𝛥𝑓𝑓𝑇𝑇(𝑥̄𝑥�, 𝑡𝑡) + 𝑔𝑔(𝑥𝑥, 𝑡𝑡)𝛹𝛹𝑤𝑤(𝑡𝑡)𝑔𝑔𝑇𝑇(𝑥𝑥, 𝑡𝑡) + 𝐾̄𝐾𝛹𝛹𝑣𝑣𝐾̄𝐾𝑇𝑇, 

где 𝐸𝐸[𝑥𝑥�(𝑡𝑡)𝑥𝑥�(𝑡𝑡)𝑇𝑇] = 𝑉𝑉𝑥𝑥�; 𝐸𝐸[𝑥𝑥�(𝑡𝑡)] = 𝑚𝑚𝑥𝑥� – математическое ожидание ошибки. 
Тогда уравнение для истинной матрицы ковариаций с учетом (14) и (15) 

принимает вид: 

 

𝑑𝑑𝑉𝑉𝑥𝑥�(𝑡𝑡)
𝑑𝑑𝑑𝑑

= �𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� 𝑉𝑉𝑥𝑥�(𝑡𝑡) + 𝑉𝑉𝑥𝑥�(𝑡𝑡) �
𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

�
𝑇𝑇

+

+ 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)𝑚𝑚𝑥𝑥� + 𝑚𝑚𝑥𝑥�𝛥𝛥𝑓𝑓𝑇𝑇(𝑥̄𝑥�, 𝑡𝑡) + (𝑔̄𝑔(𝑥̄𝑥�, 𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡))(𝛹̄𝛹𝑤𝑤(𝑡𝑡) + 𝛥𝛥𝛹𝛹𝑤𝑤(𝑡𝑡))(𝑔̄𝑔(𝑥̄𝑥�, 𝑡𝑡) +
+ 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡))𝑇𝑇+𝐾̄𝐾(𝛹̄𝛹𝑣𝑣(𝑡𝑡) + 𝛥𝛥𝛹𝛹𝑣𝑣(𝑡𝑡))𝐾̄𝐾𝑇𝑇.

 (20) 

Математическое ожидание ошибки оценивания 𝑚𝑚𝑥𝑥� вычисляется из уравнения для 
ошибки фильтрации (19) с учетом того, что для шумов 𝑤𝑤(𝑡𝑡) и 𝑣𝑣(𝑡𝑡) среднее равно нулю: 

 =

𝑑𝑑𝑑𝑑[𝑥𝑥�(𝑡𝑡)]
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑚𝑚𝑥𝑥�
𝑑𝑑𝑑𝑑

=

𝐸𝐸 ��𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

� 𝑥𝑥�(𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡) + 𝑔𝑔(𝑥𝑥, 𝑡𝑡)𝑤𝑤(𝑡𝑡) − 𝐾̄𝐾𝑣𝑣(𝑡𝑡) − 𝐾̄𝐾𝛥𝛥ℎ(𝑥̄𝑥�, 𝑡𝑡)� =

= �𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

�𝑚𝑚𝑥𝑥� + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡) − 𝐾̄𝐾𝛥𝛥ℎ(𝑥̄𝑥�, 𝑡𝑡),

 (21) 

где 𝐾𝐾� = 𝑉𝑉�𝑥𝑥�
𝜕𝜕ℎ�𝑇𝑇(x�� ,𝑡𝑡)

𝜕𝜕x��
𝛹𝛹𝑣𝑣���

−1, 𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑔̄𝑔(𝑥̄𝑥�, 𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡). 
При нулевых отклонениях параметров от действительных значений истинная 

матрица ковариаций вырождается в (13), в чем можно легко убедиться с помощью 
подстановки нулевых отклонений в (20) и применения правила (𝐴𝐴𝐴𝐴)𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇. 
Сравнивая истинную (20) и предполагаемую (13) ковариацию, можно прийти к выводу, 
что основным отличием является наличие дополнительного члена, связанного с 
математическим ожиданием от ошибки оценивания. При выводе уравнения (13) 
предполагается, что оценка 𝑥𝑥� является несмещенной, выражение (21) позволяет 
проверить правильность этого предположения. 

Теперь найдем чувствительность в большом. Обозначим ∆𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑥𝑥�(𝑡𝑡) − 𝑉𝑉�𝑥𝑥�(𝑡𝑡) и 
вычтем из (20) выражение (13), чтобы получить дифференциальное уравнение для ∆𝑉𝑉: 

 

𝑑𝑑(𝛥𝛥𝛥𝛥(𝑡𝑡))
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

𝛥𝛥𝛥𝛥(𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑡𝑡) �𝜕𝜕𝑓̄𝑓(𝑥̄𝑥�,𝑡𝑡)
𝜕𝜕𝑥̄𝑥�

�
𝑇𝑇
− 𝐾̄𝐾 𝜕𝜕ℎ̄(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
𝛥𝛥𝛥𝛥(𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡)𝑚𝑚𝑥𝑥� + 𝑚𝑚𝑥𝑥�𝛥𝛥𝑓𝑓𝑇𝑇(𝑥̄𝑥�, 𝑡𝑡) +

+ 𝑉𝑉𝑥𝑥�𝐾̄𝐾
𝜕𝜕ℎ̄𝑇𝑇(𝑥̄𝑥�,𝑡𝑡)

𝜕𝜕𝑥̄𝑥�
+ 𝐾̄𝐾(𝛹̄𝛹𝑣𝑣(𝑡𝑡) + 𝛥𝛥𝛹𝛹𝑣𝑣(𝑡𝑡))𝐾̄𝐾𝑇𝑇 + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡))(𝛹̄𝛹𝑤𝑤(𝑡𝑡) + 𝛥𝛥𝛹𝛹𝑤𝑤(𝑡𝑡))(𝑔̄𝑔(𝑥̄𝑥�, 𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡))𝑇𝑇 +

+ 𝑔̄𝑔(𝑥̄𝑥�, 𝑡𝑡)(𝛹̄𝛹𝑤𝑤(𝑡𝑡)𝛥𝛥𝑔𝑔𝑇𝑇(𝑥̄𝑥�, 𝑡𝑡) + 𝛥𝛥𝛹𝛹𝑤𝑤(𝑡𝑡)(𝑔̄𝑔(𝑥̄𝑥�, 𝑡𝑡) + 𝛥𝛥𝛥𝛥(𝑥̄𝑥�, 𝑡𝑡))𝑇𝑇).

  

Дифференциальное уравнение для чувствительности: 

 𝑑𝑑Г(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡(𝑉𝑉𝑥𝑥�(𝑡𝑡)−𝑉̄𝑉𝑥𝑥�(𝑡𝑡))
𝛥𝛥𝛥𝛥

= 𝑑𝑑
𝑑𝑑𝑑𝑑

𝑡𝑡𝑡𝑡(𝛥𝛥𝛥𝛥)
𝛥𝛥𝛥𝛥

=
𝑡𝑡𝑡𝑡�𝑑𝑑(𝛥𝛥𝛥𝛥)

𝑑𝑑𝑑𝑑 �

𝛥𝛥𝛥𝛥
.  

Чувствительность в малом может быть получена путем дифференцирования 
уравнения (20) по интересующей нас переменной. 

Результаты 

При численном расчете чувствительности в большом исходные модели 
наблюдения и состояния были приняты за истинные, отклонение параметров задавалось 
через переменную ∆𝑏𝑏 ∈ [∆𝑓𝑓,∆ℎ,∆𝛹𝛹𝑣𝑣]. Обработка сигналов производилась методами 



Моделирование, оптимизация и информационные технологии /  
Modeling, Optimization and Information Technology  

2026;14(2) 
https://moitvivt.ru 

 

  9 | 16 

калмановской фильтрации по условному среднему и с помощью фильтра, оптимального 
по критерию максимума апостериорной вероятности (МАВ). 

Для предложенных моделей заданы следующие начальные условия:  
− Фаза и доплеровский сдвиг частоты распределены по нормальному закону; 

задержка имеет равномерное распределение;  
− ОСШ = 6 дБ; 
− Начальная дисперсия ошибки оценивания для всех параметров: Vx(0) = 10-20; 
− СКО для параметров с гауссовским распределением: 0,5; 
− Интервал корреляции для гауссовского распределения: 1 с; 

− Начальный вектор состояния: �
𝜏𝜏з
𝜔𝜔𝑑𝑑
𝜑𝜑
� = �

0,17 с
105 Гц

10°
�. 

На графиках используются обозначения: ФК1, ФК2 – фильтры Калмана 1-го и 
2-го порядков точности, МАВ – фильтр, оптимальный по критерию МАВ. 

Функция чувствительности при отклонении параметра f(t). Рассмотрим 
функцию чувствительности в большом для параметра f. На Рисунке 1 изображены 
графики чувствительности при фиксированном значении рассогласования ∆𝑓𝑓 на 
интервале наблюдения, иными словами устойчивость фильтров к отклонению параметра 
f. Значения Г масштабированы для наглядности. Реальный масштаб отклонений отражен 
только на Рисунках 1, 2 и 3, где зафиксированы значения следа дисперсий ошибок 
оценивания в ненормированном виде.  

  
 а) б) 

Рисунок 1 – Устойчивость фильтров к отклонению параметра f при фиксированном значении: 
а – Δf = 1,01; б – Δf = 1,81 

Figure 1 – Filter stability to deviation of parameter f at a fixed value: 
а – Δf = 1.01; b – Δf = 1.81 

На Рисунке 2 изображены функции чувствительности от рассогласования 
параметра f.  
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 а) б) 

Рисунок 2 – Зависимости нормированного значения чувствительности в большом от величины 
отклонения параметра f от его истинного значения для фиксированного момента времени: 

а – t = 1,999 c; б – t = 4,099 c 
Figure 2 – Dependences of the normalized sensitivity value in large on the magnitude of the deviation 

of the parameter f from its true value for a fixed point in time: а – t = 1.999 s; b – t = 4.099 s 

Графики Рисунка 3 демонстрируют разброс значений следа матрицы ошибки 
оценивания при изменении параметра f.  

 
 а) б) 

Рисунок 3 – Зависимость следа матрицы действительной дисперсии ошибки оценивания Vx и 
дисперсии с учетом отклонения параметра Δf (Vx

*) от времени для разных фильтров при: 
а – Δf = 0,81; б – Δf = 1,81 

Figure 3 – Dependence of the trace of the matrix of the actual variance of the estimation error Vx and 
the variance taking into account the deviation of the parameter Δf (Vx

*) on time for different filters at: 
а – Δf = 0.81; b – Δf = 1.81 
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Изменение параметра h(t). Рисунок 4 отображает устойчивость фильтрации к 
изменению параметра наблюдения ∆ℎ. На Рисунках 5 и 6 показаны чувствительность и 
ковариационные матрицы ошибок оценивания. 

    
 а) б) 

Рисунок 4 – Устойчивость фильтров к отклонению параметра h при фиксированном значении: 
а – Δh = 0,06; б – Δh = 0,81 

Figure 4 – Filter stability to deviation of parameter h at a fixed value of: а – Δh = 0.06; b – Δh = 0.81 

 
 а) б) 

Рисунок 5 – Зависимости нормированного значения чувствительности в большом от величины 
отклонения параметра h от его истинного значения для фиксированного момента времени: 

а – t = 1,999 c; б – t = 4,099 c 
Figure 5 – Dependences of the normalized sensitivity value in large on the magnitude of the deviation 

of the parameter h from its true value for a fixed point in time а – t = 1.999 s; b – t = 4.099 s 
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 а) б) 

Рисунок 6 – Зависимость следа матрицы действительной дисперсии ошибки оценивания Vx и 
дисперсии с учетом отклонения параметра Δh (Vx

*) от времени для разных фильтров при: 
а – Δh = 0,31; б – Δh = 0,8 

Figure 6 – Dependence of the trace of the matrix of the actual variance of the estimation error Vx and 
the variance taking into account the deviation of the parameter Δh (Vx

*) on time for different filters at: 
а – Δh = 0.31; b – Δh = 0.8 

Изменение параметра 𝛹𝛹𝑣𝑣(𝑡𝑡). На Рисунках 7, 8 и 9 изображены стабильность, 
чувствительность и след ковариационных матриц ошибок оценивания при изменении 
матрицы интенсивности шума наблюдения 𝛹𝛹𝑣𝑣.  

  
 а) б) 

Рисунок 7 – Устойчивость фильтров к отклонению параметра 𝛹𝛹𝑣𝑣 при фиксированном значении: 
а – Δ𝛹𝛹𝑣𝑣 = 0,11; б – Δ𝛹𝛹𝑣𝑣 = 1,61 

Figure 7 – Filter stability to deviation of the parameter 𝛹𝛹𝑣𝑣 at a fixed value: 
 a – Δ𝛹𝛹𝑣𝑣 = 0.11; b – Δ𝛹𝛹𝑣𝑣 = 1.61 

На Рисунке 8 изображены функции чувствительности от рассогласования 
параметра 𝛹𝛹𝑣𝑣.  
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 а) б) 

Рисунок 8 – Зависимости чувствительности в большом от величины отклонения параметра от 
его истинного значения для фиксированного момента времени: а – t = 1,399 c; б – t = 5,099 c 

Figure 8 – Dependences of sensitivity in large on the magnitude of the deviation of the parameter from 
its true value for a fixed point in time: а – t = 1.399 s; b – t = 5.099 s 

  
 а) б) 

Рисунок 9 – Зависимость следа матрицы действительной дисперсии ошибки оценивания Vx и 
дисперсии с учетом отклонения параметра Δ𝛹𝛹𝑣𝑣 (Vx

*) от времени для разных фильтров при: 
а – Δ𝛹𝛹𝑣𝑣 = 1,61; б – Δ𝛹𝛹𝑣𝑣 = 0,31 

Figure 9 – Dependence of the trace of the matrix of the actual variance of the estimation error Vx and 
the variance taking into account the deviation of the parameter Δ𝛹𝛹𝑣𝑣 (Vx

*) on time for different filters 
at: а – Δ𝛹𝛹𝑣𝑣 = 1.61; b – Δ𝛹𝛹𝑣𝑣 = 0.31 

Обсуждение 
По Рисунку 1, демонстрирующему устойчивость фильтров к отклонению 

параметра f, до половины временного интервала можно наблюдать осциллирующий 
характер функции чувствительности, затем она стремится к постоянному значению, что 
свидетельствует о линейном изменении разброса дисперсии 𝑡𝑡𝑡𝑡(𝑉𝑉𝑥𝑥�(𝑡𝑡)) − 𝑡𝑡𝑡𝑡(𝑉𝑉�𝑥𝑥�(𝑡𝑡)). По 
Рисунку 2 можно увидеть, что после резкого скачка чувствительности для значения 
Δf ≈ 0,5 при дальнейшем увеличении рассогласования отклонение дисперсии меняется 
линейно или более сложным образом, как на Рисунке 2б, где заметен прирост 
чувствительности на 5 % (фильтры Калмана) – 10 % (фильтр МАВ). Согласно 
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Рисунку 3б, большему значению Δ𝑓𝑓 соответствует большая дисперсия в 
установившемся режиме.  

При изменении параметра h, как и в случае для f, в первой половине интервала 
наблюдения можно увидеть скачок чувствительности, которая затем стабилизируется. 
Показанные на Рисунке 6 ковариации ошибок оценивания демонстрируют заметное 
ухудшение точности для фильтра МАВ, при этом ковариация фильтров Калмана 
практически не меняется. 

При изменении интенсивности шума наблюдения 𝛹𝛹𝑣𝑣 к концу интервала 
наблюдения ковариация ошибки оценивания при фиксированном Δ𝛹𝛹𝑣𝑣 практически 
«сливается» с истинной ковариацией, что демонстрируют Рисунки 7 и 8.  

Интересно заметить, что эффект увеличения ошибки фильтрации очевиднее всего 
проявляется при изменении параметра f в устоявшемся режиме. Для параметра h все 
графики дисперсии для фильтров Калмана сходятся к одному и тому же значению вне 
зависимости от того, какой фильтр использовался, будь то истинная дисперсия или 
предполагаемая. Из всех трех вариантов этот случай характеризуется минимальной 
чувствительностью для фильтров Калмана, но максимальной – для фильтра МАВ. 
Третий случай – изменение матрицы интенсивности шума наблюдения – показывает, что 
даже при значительном отклонении от истинной дисперсии ошибки в начале интервала 
наблюдения увеличение дисперсии нивелируется в конце этого интервала.  

Заключение 
Результаты моделирования показывают, что влияние вариаций параметров 

модели различно для разных моментов времени, но при этом сохраняется общая 
тенденция к стабилизации чувствительности на второй половине интервала наблюдения. 
В зависимости от анализируемого параметра увеличение ковариации, например, 
остается существенным в состоянии стабильности (Рисунок 3) или практически 
нивелируется во второй половине интервала наблюдения (Рисунок 9). Таким образом, на 
основании данных о чувствительности можно формулировать требования к допустимым 
отклонениям параметров, при которых модель работает адекватно, и необходимости в 
усложненных средствах обработки нет. Эти выводы и приведенный в работе принцип 
вычисления чувствительности можно использовать для рационального выбора 
алгоритма нелинейного оценивания в случаях, когда точные сведения о параметрах 
сигналов отсутствуют, а также при синтезе алгоритмов фильтрации, минимизирующих 
рассогласование истинной и предполагаемой ковариаций ошибки, аналогично [10]. 
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