Триггеры двигательной активности, измеряемые с помощью функциональной спектроскопии в околоинфракрасном диапазоне (fNIRS): обзор
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
cетевое издание
issn 2310-6018

Триггеры двигательной активности, измеряемые с помощью функциональной спектроскопии в околоинфракрасном диапазоне (fNIRS): обзор

Самандари А.М.,  Афонин А.Н. 

УДК 617.57.77
DOI: 10.26102/2310-6018/2024.45.2.004

  • Аннотация
  • Список литературы
  • Об авторах

Научные исследования разошлись в интерпретации активности первичной моторной коры головного мозга. Различные исследования показали, что первичная моторная кора активируется только во время физических двигательных задач. В то время как другие исследования показали, что аналогичную измеримую активность можно наблюдать и записывать, когда моторная кора возбуждается или стимулируется во время мысленного представления движения. Таким образом, целью данного обзора было сравнение триггеров активации моторной коры во время физического выполнения и мысленного представления движения путем регистрации сигналов мозга, возникающих в результате стимуляции, с использованием метода функциональной спектроскопии ближнего инфракрасного диапазона на основе нейронного интерфейса (интерфейс мозг-компьютер). Данное исследование выявляет характерные черты и сравнения на основе различных подходов к анализу и систематической реализации целевых триггеров активации моторной коры во время обучения на нейронном интерфейсе (fNIRS). Основываясь на вышеизложенном, в заключение данного обзора подчеркивается, что триггеры активации коры головного мозга в целом и под разными названиями вызывают активность, которая может быть зарегистрирована путем измерения различных изменений, происходящих в концентрации гемоглобина. Иными словами, как выполнение физических задач, так и сходные ментальные представления движения вызывают ощутимую активность в моторной коре. Это предоставляет обоснование для протезирования, реабилитации и других применений. Кроме того, это стимулирует будущие исследования по выявлению положительных триггеров активации коры для изучения психологических состояний когнитивных функций и определенных патологических состояний, а также нейрофизиологических исследований.

1. Асадуллаев Р.Г., Афонин А.Н., Щетинина Е.С. Распознавание паттернов двигательной активности нейронной сетью по непрерывным данным оптической томографии fNIRS. Экономика. Информатика. 2021;48(4):735–746. https://doi.org/10.52575/2687-0932-2021-48-4-735-746

2. Hramov A.E., Maksimenko V.A., Pisarchik A.N. Physical principles of Brain–Computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports. 2021;918:1–133. https://doi.org/10.1016/j.physrep.2021.03.002

3. Hassanien A.E., Azar A.T. Brain-Computer Interfaces: Current Trends and Applications. Cham: Springer; 2015. 422 p.

4. Berestov R.M., Nevedin A.V., Bobkov E.A., Belov V.S. Brain–Computer interface technologies for monitoring and control of bionic systems. In: 4th International Symposium and School for Young Scientists on Physics, Engineering and Technologies for Bio-Medicine, PhysBioSymp 2019: Journal of physics: conference series, 26-30 October 2019, Moscow, Russia. IOP Publishing Limited; 2021. P. 012030. https://doi.org/10.1088/1742-6596/2058/1/012030

5. Wang Z., Fang J., Zhang J. Rethinking Delayed Hemodynamic Responses for fNIRS Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023;31:4528–4538. https://doi.org/10.1109/TNSRE.2023.3330911

6. Xuejun B., Qihan Z., Peng Z., Song Z., Ying L., Xing S., Guohui P. Comparison of motor execution and motor imagery brain activation patterns: A fNIRS Study. Acta Psychologica Sinica. 2016;48(5):495–508. https://doi.org/10.3724/SP.J.1041.2016.00495

7. Dale R., O'sullivan T.D., Howard S., Orihuela-Espina F., Dehghani H. System Derived Spatial-Temporal CNN for High-Density fNIRS BCI. IEEE Open Journal of Engineering in Medicine and Biology. 2023;4:85–95. https://doi.org/10.1109/OJEMB.2023.3248492

8. Yang L., Van Hulle M.M. Real-Time Navigation in Google Street View® Using a Motor Imagery-Based BCI. Sensors. 2023;23(3). https://doi.org/10.3390/s23031704 [Accessed 16th January 2024].

9. Gulraiz A., Naseer N., Nazeer H., Khan M.J., Khan R.A., Shahbaz Khan U. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI. Sensors. 2022;22(7). https://doi.org/10.3390/s22072575 [Accessed 16th January 2024].

10. Xu B., Li W., Liu D., Zhang K., Miao M., Xu G., Song A. Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking. Mathematics. 2022;10(4). https://doi.org/10.3390/math10040618 [Accessed 17th January 2024].

11. Kurkin S.A., Badarin A.A., Grubov V.V., Maksimenko V., Hramov A.E. The oxygen saturation in the primary motor cortex during a single hand movement: functional near-infrared spectroscopy (fNIRS) study. The European Physical Journal Plus. 2021;136(5). https://doi.org/10.1140/epjp/s13360-021-01516-7 [Accessed 17th January 2024].

12. Kohli S. Exploring the relationship between hemispheric prefrontal cortex activation, standing balance, and fatigue in individuals post-stroke: A fNIRS study. URL: https://ir.lib.uwo.ca/etd/9569/ [Accessed 17th January 2024].

13. Baik S.Y., Kim J.-Y., Choi J., Baek J.Y., Park Y., Kim Y., Jung M., Lee S.-H. Prefrontal Asymmetry during Cognitive Tasks and Its Relationship with Suicide Ideation in Major Depressive Disorder: An fNIRS Study. Diagnostics. 2019;9(4). https://doi.org/10.3390/diagnostics9040193 [Accessed 17th January 2024].

14. Huang F., Hirano D., Shi Y., Taniguchi T. Comparison of cortical activation in an upper limb added-purpose task versus a single-purpose task: a near-infrared spectroscopy study. Journal of Physical Therapy Science. 2015;27(12):3891–3894. https://doi.org/10.1589/jpts.27.3891

15. Yükselen G., Öztürk O.C., Canlı G.D., Erdoğan S.B. Investigating the Neural Correlates of Processing Basic Emotions: A Functional Near-Infrared Spectroscopy (fNIRS) Study. https://doi.org/10.1101/2023.08.08.551979 [Accessed 17th January 2024].

16. Jalalvandi M., Riyahi Alam N., Sharini H., Hashemi H., Nadimi M. Brain Cortical Activation during Imagining of the Wrist Movement Using Functional Near Infrared Spectroscopy (fNIRS). Journal of Biomedical Physics and Engineering. 2021;11(5):583–594. https://doi.org/10.31661/jbpe.v0i0.1051

17. Jalalvandi M., Sharini H., Naderi Y., Riahi Alam N. Assessment of Brain Cortical Activation in Passive Movement during Wrist Task Using Functional Near Infrared Spectroscopy (fNIRS). Frontiers in Biomedical Technologies. 2019;6(2):99–105. https://doi.org/10.18502/fbt.v6i2.1691

18. Zhu L., Haghani S., Najafizadeh L. On fractality of functional near-infrared spectroscopy signals: analysis and applications. Neurophotonics. 2020;7(2). https://doi.org/10.1117/1.NPh.7.2.025001 [Accessed 17th January 2024].

19. Lee S.H., Jin S.H., An J. The difference in cortical activation pattern for complex motor skills: A functional near-infrared spectroscopy study. Scientific Reports. 2019;9(1). https://doi.org/10.1038/s41598-019-50644-9 [Accessed 17th January 2024].

20. Fishburn F.A., Ludlum R.S., Vaidya C.J., Medvedev A.V. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. NeuroImage. 2019;184:171–179. https://doi.org/10.1016/j.neuroimage.2018.09.025

21. Shi S., Qie S., Wang H., Wang J., Liu T. Recombination of the right cerebral cortex in patients with left side USN after stroke: fNIRS evidence from resting state. Frontiers in Neurology. 2023;14. https://doi.org/10.3389/fneur.2023.1178087 [Accessed 19th January 2024].

22. Li H., Liu J., Tian S., Fan S., Wang T., Qian H., Liu G., Zhu Y., Wu Y., Hu R. Language reorganization patterns in global aphasia–evidence from fNIRS. Frontiers in Neurology. 2023;13. https://doi.org/10.3389/fneur.2022.1025384 [Accessed 19th January 2024].

23. An J., Jin S.H., Lee S.H., Jang G., Abibullaev B., Lee H., Moon J.-I. Cortical Activation Pattern for Grasping during Observation,Imagery, Execution, FES, and Observation-FES integrated BCI: An fNIRS pilot study. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Proceedings of The Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 03-07 July 2013, Osaka, Japan. IEEE; 2013. P. 6345–6348.

24. Lu F.-M., Wang Y.-F., Zhang J., Chen H.-F., Yuan Z. Optical mapping of the dominant frequency of brain signal oscillations in motor systems. Scientific Reports. 2017;7(1). https://doi.org/10.1038/s41598-017-15046-9 [Accessed 19th January 2024].

25. Ma T., Chen W., Li X., Xia Y., Zhu X., He S. fNIRS Signal Classification Based on Deep Learning in Rock-Paper-Scissors Imagery Task. Applied Sciences. 2021;11(11). https://doi.org/10.3390/app11114922 [Accessed 19th January 2024].

26. Афонин А.Н., Асадуллаев Р.Г., Ситникова М.А. Анализ данных fNIRS-томографа для управления протезами конечностей с помощью интерфейса мозг-компьютер. Научно-технический вестник Поволжья. 2018;(11):182–184.

27. Самандари А.М.Н. fNIRS как гибридная система с ЭЭГ и ПЭМГ для управления протезами. В сборнике: Научные исследования молодых ученых: сборник статей XXV Международной научно-практической конференции, 10 ноября 2023 года, Пенза, Россия. Пенза: Наука и Просвещение (ИП Гуляев Г.Ю.); 2023. С. 31–34.

28. Kanthack T.F.D., Bigliassi M., Altimari L.R. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: A functional near-infrared spectroscopy (fNIRS) study. Motriz: Revista de Educação Física. 2013;19(3):627–632. https://doi.org/10.1590/S1980-65742013000300014

29. Arivudaiyanambi J., Mohan S., Chhabra H., Shajil N., Venkatasubramanian G. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications. Biomedical Signal Processing and Control. 2020;62. https://doi.org/10.1016/j.bspc.2020.102133 [Accessed 19th January 2024].

30. Scholkmann F., Tachtsidis I., Wolf M., Wolf U. Systemic physiology augmented functional near-infrared spectroscopy: a powerful approach to study the embodied human brain. Neurophotonics. 2022;9(3). https://doi.org/10.1117/1.NPh.9.3.030801 [Accessed 19th January 2024].

31. Zohdi H., Scholkmann F., Wolf U. Individual Differences in Hemodynamic Responses Measured on the Head Due to a Long-Term Stimulation Involving Colored Light Exposure and a Cognitive Task: A SPA-fNIRS Study. Brain Sciences. 2021;11(1). https://doi.org/10.3390/brainsci11010054 [Accessed 19th January 2024].

32. Zohdi H., Egli R., Guthruf D., Scholkmann F., Wolf U. Color-dependent changes in humans during a verbal fluency task under colored light exposure assessed by SPA-fNIRS. Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-021-88059-0 [Accessed 19th January 2024].

33. Li Y., Ma Y., Ma S., Hocke L.M., Tong Y., Frederick B. A low-cost multichannel NIRS oximeter for monitoring systemic low-frequency oscillations. Neural Computing and Applications. 2020;32:15629–15641. https://doi.org/10.1007/s00521-020-04897-5

34. Kirilina E., Yu N., Jelzow A., Wabnitz H., Jacobs A.M., Tachtsidis I. Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex. Frontiers in Human Neuroscience. 2013;7. https://doi.org/10.3389/fnhum.2013.00864 [Accessed 19th January 2024].

35. Cockx H., Oostenveld R., Tabor M., Savenco E., Setten A., Cameron I., Wezel R. fNIRS is sensitive to leg activity in the primary motor cortex after systemic artifact correction. NeuroImage. 2023;269. https://doi.org/10.1016/j.neuroimage.2023.119880 [Accessed 19th January 2024].

36. Batula A.M., Mark J.A., Kim Y.E., Ayaz H. Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS. Computational Intelligence and Neuroscience. 2017;2017. https://doi.org/10.1155/2017/5491296 [Accessed 19th January 2024].

37. Asanza V., Pelaez E., Loayza F., Lorente-Leyva L.L., Peluffo-Ordóñez D.H. Identification of Lower-Limb Motor Tasks via Brain–Computer Interfaces: A Topical Overview. Sensors. 2022;22(5). https://doi.org/10.3390/s22052028 [Accessed 19th January 2024].

38. Sattar N.Y., Kausar Z., Usama S.A., Naseer N., Farooq U., Abdullah A., Hussain S.Z., Khan U.S., Khan H., Mirtaheri P. Enhancing Classification Accuracy of Transhumeral Prosthesis: A Hybrid sEMG and fNIRS Approach. IEEE Access. 2021;9:113246–113257. https://doi.org/10.1109/ACCESS.2021.3099973

39. Maher A., Qaisar S.M., Salankar N., Jiang F., Tadeusiewicz R., Pławiak P., Abd El-Latif A.A., Hammad M. Hybrid EEG-fNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning. Biocybernetics and Biomedical Engineering. 2023;43(2):463–475. https://doi.org/10.1016/j.bbe.2023.05.001

40. Liu Z., Shore J., Wang M., Yuan F., Buss A., Zhao X. A systematic review on hybrid EEG/fNIRS in brain-computer interface. Biomedical Signal Processing and Control. 2021;68. https://doi.org/10.1016/j.bspc.2021.102595 [Accessed 19th January 2024].

41. Ali M.U., Kim K.S., Kallu K.D., Zafar A., Lee S.W. OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface. Bioengineering. 2023;10(5). https://doi.org/10.3390/bioengineering10050608 [Accessed 19th January 2024].

42. Pereira J., Direito B., Lührs M., Castelo-Branco M., Sousa T. Multimodal assessment of the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor tasks. Scientific Reports. 2023;13(1). https://doi.org/10.1038/s41598-023-29123-9 [Accessed 19th January 2024].

43. Самандари Али М. Спектроскопия в околоинфракрасном диапазоне (fNIRS) как гибридная система: обзор. Моделирование, оптимизация и информационные технологии. 2024;12(1). (На англ.). https://doi.org/10.26102/2310-6018/2024.44.1.005 (дата обращения: 20.01.2024).

44. Thomas R., Shin S.S., Balu R. Applications of near-infrared spectroscopy in neurocritical care. Neurophotonics. 2023;10(2). https://doi.org/10.1117/1.NPh.10.2.023522 [Accessed 20th January 2024].

45. Stillwell R.A., Kitsmiller V.J., Wei A.Y., Chong A., Senn L., O’Sullivan T.D. A scalable, multi-wavelength, broad bandwidth frequency-domain near-infrared spectroscopy platform for real-time quantitative tissue optical imaging. Biomedical Optics Express. 2021;12(11):7261–7279. https://doi.org/10.1364/BOE.435913

46. Lacerenza M., Frabasile L., Buttafava M., Spinelli L., Bassani E., Micheloni F., Amendola C., Torricelli A., Contini D. Motor cortex hemodynamic response to goal-oriented and non-goal-oriented tasks in healthy subjects. Frontiers in Neuroscience. 2023;17. https://doi.org/10.3389/fnins.2023.1202705 [Accessed 20th January 2024].

47. Al-Omairi H.R., Fudickar S., Hein A., Rieger J.W. Improved Motion Artifact Correction in fNIRS Data by Combining Wavelet and Correlation-Based Signal Improvement. Sensors. 2023;23(8). https://doi.org/10.3390/s23083979 [Accessed 20th January 2024].

48. Yoo S.-H., Huang G., Hong K.-S. Physiological Noise Filtering in Functional Near-Infrared Spectroscopy Signals Using Wavelet Transform and Long-Short Term Memory Networks. Bioengineering. 2023;10(6). https://doi.org/10.3390/bioengineering10060685 [Accessed 20th January 2024].

49. Zafar A., Kallu K.D., Yaqub M.A., Ali M.U., Byun J.H., Yoon M., Kim K.S. A Hybrid GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI Study. International Journal of Intelligent Systems. 2023;2023. https://doi.org/10.1155/2023/8812844 [Accessed 20th January 2024].

50. Patashov D., Menahem Y., Gurevitch G., Kameda Y., Goldstein D., Balberg M. fNIRS: Non-stationary preprocessing methods. Biomedical Signal Processing and Control. 2023;79.1. https://doi.org/10.1016/j.bspc.2022.104110 [Accessed 20th January 2024].

51. Khan R.A., Naseer N., Saleem S., Qureshi N.K., Noori F.M., Khan M.J. Cortical Tasks-Based Optimal Filter Selection: An fNIRS Study. Journal of Healthcare Engineering. 2020;2020. https://doi.org/10.1155/2020/9152369 [Accessed 20th January 2024].

52. Ardali M.K., Rana A., Purmohammad M., Birbaumer N., Chaudhary U. Semantic and BCI-performance in completely paralyzed patients: Possibility of language attrition in completely locked in syndrome. Brain and Language. 2019;194:93–97. https://doi.org/10.1016/j.bandl.2019.05.004

53. Durantin G., Scannella S., Gateau T., Delorme A., Dehais F. Processing Functional Near Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during Simulated Flight. Frontiers in Human Neuroscience. 2016;9. https://doi.org/10.3389/fnhum.2015.00707 [Accessed 20th January 2024].

54. Rahman A., Rashid M.A., Ahmad M. Selecting the optimal conditions of Savitzky–Golay filter for fNIRS signal. Biocybernetics and Biomedical Engineering. 2019;39(3):624–637. https://doi.org/10.1016/j.bbe.2019.06.004

55. Hocke L.M., Oni I.K., Duszynski C.C., Corrigan A.V., Frederick B.B., Dunn J.F. Automated Processing of fNIRS Data–A Visual Guide to the Pitfalls and Consequences. Algorithms. 2018;11(5). https://doi.org/10.3390/a11050067 [Accessed 20th January 2024].

56. Zhang S., Zhenga Y., Wanga D., Wanga L., Maa J., Zhanga J., Xua W., Li D., Zhang D. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface. Neuroscience Letters. 2017;655:35–40. https://doi.org/10.1016/j.neulet.2017.06.044

57. Klein F., Kranczioch C. Signal Processing in fNIRS: A Case for the Removal of Systemic Activity for Single Trial Data. Frontiers in Human Neuroscience. 2019;13. https://doi.org/10.3389/fnhum.2019.00331 [Accessed 20th January 2024].

58. Lühmann A., Li X., Müller K.-R., Boas D.A., Yücel M.A. Improved physiological noise regression in fNIRS: A multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis. NeuroImage. 2020;208. https://doi.org/10.1016/j.neuroimage.2019.116472 [Accessed 20th January 2024].

59. Hong K.-S., Khan M.J., Hong M.J. Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces. Frontiers in Human Neuroscience. 2018;12. https://doi.org/10.3389/fnhum.2018.00246 [Accessed 20th January 2024].

60. Liu R., Reimer B., Song S., Mehler B., Solovey E. Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for driver cognitive load classification. Journal of Neural Engineering. 2021;18(3). https://doi.org/10.1088/1741-2552/abd2ca [Accessed 20th January 2024].

61. Zhang C., Yang H., Fan C.-C., Chen S., Fan C., Hou Z.-G., Chen J., Peng L., Xiang K., Wu Y., Xie H. Comparing Multi-Dimensional fNIRS Features Using Bayesian Optimization-Based Neural Networks for Mild Cognitive Impairment (MCI) Detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023;31:1019–1029. https://doi.org/10.1109/TNSRE.2023.3236007

62. Phillips Z., Canoy R.J., Paik S.-H., Lee S.H., Kim B.-M. Functional Near-Infrared Spectroscopy as a Personalized Digital Healthcare Tool for Brain Monitoring. Journal of Clinical Neurology. 2023;19(2):115–124. https://doi.org/10.3988/jcn.2022.0406

63. Khalil K., Asgher U., Ayaz Y. Novel fNIRS study on homogeneous symmetric feature-based transfer learning for brain–computer interface. Scientific Reports. 2022;12(1). https://doi.org/10.1038/s41598-022-06805-4 [Accessed 20th January 2024].

64. Hamid H., Naseer N., Nazeer H., Khan M.J., Khan R.A., Khan U.S. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks. Sensors. 2022;22(5). https://doi.org/10.3390/s22051932 [Accessed 20th January 2024].

65. Dinga Q., Ouab Z., Yaoa S., Wuab C., Chena J., Shena J., Lanc Y., Xu G. Cortical activation and brain network efficiency during dual tasks: An fNIRS study. NeuroImage. 2024;289. https://doi.org/10.1016/j.neuroimage.2024.120545 [Accessed 20th January 2024].

66. Matthew N., Sudan D., Meryem A.Y., Alexander V., David A.B., Kamal S., Ning M., Duwadi S., Yücel M.A., Lühmann A.V., Boas D.A., Sen K. fNIRS Dataset During Complex Scene Analysis. https://doi.org/10.1101/2024.01.23.576715 [Accessed 20th January 2024].

Самандари Али Мирдан

Email: aliofphysics777ali@gmail.com

Белгородский государственный университет

Белгород, Российская Федерация

Афонин Андрей Николаевич
Доктор технических наук, доцент

Белгородский государственный университет

Белгород, Российская Федерация

Ключевые слова: функциональная спектроскопия ближнего инфракрасного диапазона, триггеры, моторная кора, интерфейс мозг-компьютер, физическое движение, мысленное представление движения

Для цитирования: Самандари А.М., Афонин А.Н. Триггеры двигательной активности, измеряемые с помощью функциональной спектроскопии в околоинфракрасном диапазоне (fNIRS): обзор. Моделирование, оптимизация и информационные технологии. 2024;12(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1522 DOI: 10.26102/2310-6018/2024.45.2.004 (на англ.)

222

Полный текст статьи в PDF

Поступила в редакцию 28.02.2024

Поступила после рецензирования 02.04.2024

Принята к публикации 12.04.2024

Опубликована 30.06.2024