Алгоритм формирования обучающих и тестовых выборок для анализа характера данных
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
cетевое издание
issn 2310-6018

Алгоритм формирования обучающих и тестовых выборок для анализа характера данных

idЧирков А.В.

УДК 681.5
DOI: 10.26102/2310-6018/2024.47.4.014

  • Аннотация
  • Список литературы
  • Об авторах

В статье представлен алгоритм адаптивного формирования обучающих и тестовых выборок для системы ANFIS, используемой для диагностики технического состояния электротехнического оборудования. Особенностью предложенного подхода является учет временных зависимостей и аномальных данных, что позволяет повысить точность и полноту распознавания неисправных состояний оборудования. Описан процесс тестирования алгоритма на синтетических данных, включающих параметры вибрации, температуры, тока и напряжения. Проведенный анализ показывает, что адаптивное разбиение данных улучшает способность системы к идентификации аномалий по сравнению с классическим методом разбиения выборок. Алгоритм успешно применим для задач диагностики оборудования в промышленности, где важно учитывать динамические изменения параметров и редкие аномальные события. Для оценки эффективности алгоритма было проведено сравнение с традиционными методами формирования выборок. Эксперимент показал, что предложенный метод позволяет улучшить качество классификации аномальных состояний оборудования. Кроме того, применение алгоритма снижает вероятность ложных срабатываний при обнаружении неисправностей. Важной особенностью разработки является возможность адаптации алгоритма к различным типам оборудования, что делает его универсальным решением для диагностики в различных промышленных отраслях. Перспективы применения алгоритма связаны с его интеграцией в системы предиктивного обслуживания и мониторинга, что позволит повысить надежность работы оборудования и снизить затраты на его ремонт и обслуживание.

Ключевые слова: ANFIS, нейро-нечеткая модель, адаптивное формирование выборок, диагностика оборудования, временные ряды, аномальные данные, промышленная диагностика, электротехническое оборудование

Для цитирования: Чирков А.В. Алгоритм формирования обучающих и тестовых выборок для анализа характера данных. Моделирование, оптимизация и информационные технологии. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1663 DOI: 10.26102/2310-6018/2024.47.4.014

269

Полный текст статьи в PDF

Поступила в редакцию 15.10.2024

Поступила после рецензирования 24.10.2024

Принята к публикации 06.11.2024

Опубликована 31.12.2024