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There are many methods and models for forecasting non-stationary time series. How-
ever, the problem of the accuracy and adequacy of the forecast of non-stationary time series
has not been solved yet. In this paper, a new forecast model, based on a multiwavelet network
with additional customizable parameters, which is called polymorphic, is proposed. The effi-
ciency of the proposed model is compared with the well-known time series forecast models
like autoregressive integrated moving average model, multilayer perceptron and hybrid mod-
el in which both models are combined. Three well-known real data sets (the Wolf's sunspot
data, the Canadian lynx data and the British pound/US dollar exchange rate data) were tak-
en as empirical data. The comparison showed that forecast model based on the proposed
multiwavelet polymorphic network has a smaller prediction error for each series. This is
achieved by introducing additional customizable parameters into the wavelet network, which
allow to better adapt to the non-stationary nature of time series. Moreover, for the wavelet
network to perform well in the presence of linearity, were used linear connections between
the wavelet neurons of input and output layers. The proposed technology can be used to pre-
dict the time series generated by dynamic processes of a different nature.

Keywords: forecasting, non-stationary time series, multiwavelet network, additional
customizable parameters, ARIMA-model, artificial neural networks, hybrid model.

1. Introduction

The behavior of many processes of the real world is represented in the
form of time series, i.e. sequences of values of any parameters of the process
under study in discrete, equidistant moments of time. In such cases, the problem
of forecasting the dynamics of the process is reduced to the problem of extrapo-
lation of time series, based on a model built on the results of its analysis.

The desire of researchers to improve the accuracy of time series forecast-
ing led to the existence of many methods and technologies for constructing
models to approximate the original values of time series. The classic model for
the analysis and prediction of non-stationary time series is the model of Boxing-
Jenkins ARIMA — Autoregressive Integrated Moving Average, which combines
the autoregressive model and the model of the moving average and uses the dif-
ferences from the original time series [1]. The forecast of time series on the ba-
sis of this model is devoted to many works proving the effectiveness of its ap-
plication in the analysis of time series of different physical nature.

However, approaches to ARIMA method suggest that time series are gen-
erated by linear processes, whereas the real-world mechanisms that generate
them are often of a non-linear nature. Therefore, one of the most accurate and
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widespread tools for building a forecasting model is prediction method based on
the artificial neural networks (ANN). In order to recover the unknown approxi-
mating function of many variables by a set of values given by the history of the
time series is used trained multilayer neural network with several inputs corre-
sponding to these variables [2]. ANN-technologies of time series analysis and
forecasting are currently devoted to many works and these technologies contin-
ue to develop. For example, in [3], neural networks (multilayer perceptron) of
forward and reverse propagation are considered. The algorithms of conjugate
gradients of quasi-Newton (BFGS-algorithm) were used for adjusting weights.
A homogeneous ensemble technology is proposed by training neural network
with each of the considered algorithms and for each algorithm the weight is cal-
culated (inversely proportional to the forecast error) and final forecast is calcu-
lated as the weighted arithmetic mean of all forecasts. In [4], the ANN is ap-
plied to forecast multi-scale Internet traffic and comparison of the effectiveness
of the Holt-Winter, ARIMA and ANN models is showed. The paper [5] dis-
cusses two ways to solve the problem of forecasting demand in seasonal time
series using ANN. In first method multilayer model of the perceptron was used,
where input is fed from the previous time series values. Several learning rules
used to correct the weights of a multilayer perceptron (inverse error propaga-
tion, adaptive and Levenberg-Marquardt). In the second method, a causal meth-
od-based ANN was used, where input is taken from decomposed time series
components (trend, seasonal and random components).

Much attention of researchers attracted to ANN forecasting technology
that combines different models, so-called hybrid or ensemble model. Hybrid
models can be homogeneous, using different neural networks (all multilayer
perceptrons, for example) or heterogeneous, for example, combining both linear
and nonlinear models. The main idea behind this multi-model approach is to
use each component's unique model ability to improve the capture of different
patterns in the data. For example, [6, 7, 8] show improvement of forecasting
characteristics of each individual model by combining ARIMA and ANN based
models. The proposed in [9] hybrid method is inspired from a similar concept,
pioneered by Zhang [6] and suggests to improve the forecasting accuracy of hy-
brid models by segregating a time series dataset into linear (detailed) and non-
linear (approximate) components through discrete wavelet transform. After da-
taset decomposition ARIMA and ANN models are used to separately recognize
and forecast the detailed and approximate components, respectively.

We note that the use of wavelet transforms in solving forecast problems
of various, especially non-stationary time-series, where the spectral content
changes with time, seems to be attractive to many researchers. This can be ex-
plained by the fact that wavelets elements are well localized both in the time
and in the frequency domains [10, 11]. The wavelet transform decomposes the
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main time series into subcomponents, which allows us to consider and capture
useful information at different resolution levels. Various wavelet-based ARIMA
models and combined wavelet-artificial neural network models were proposed
[12, 13, 14]. These models provide a higher prediction accuracy than conven-
tional ARIMA and ANN models.

In recent years, specialized neural networks or wavelet networks [15]
have been proposed. The wavelet networks are modification of networks, based
on radial basis functions were wavelets are used as basic functions. Various
structures of wavelet networks are proposed; however, their general idea is to
adjust the parameters of compression and shift of wavelet neurons for the best
data learning. So, in [16] a multiwavelet neural network is proposed, in which a
multidimensional wavelet is used as an activation function of wavelet neurons
in a hidden layer, that allows to approximate multidimensional functions.

The paper [17] proposes a new structure of wavelet networks for time se-
ries processing, which differs from the traditional one by introducing additional
configurable parameters into the basic wavelets. Such a network, called poly-
morphic that has better approximating properties due to better adaptability to
the character of time series non-stationarity. In [18] to account for inertia in
time series, inverse relations are introduced into the structure of polymorphic
wavelet network, considering the time series levels in the previous moments of
time.

In this paper, in order to improve the accuracy of prediction of nonsta-
tionary time series, a new model of the wavelet network is proposed, which
combines the advantages of the wavelet networks considered in [17, 18, 19]. To
illustrate the efficiency of the proposed model, computational experiments were
carried out with three well-known data: the Wolf's sunspot data, the Canadian
lynx data and the British pound/US dollar exchange rate data. A comparison of
the obtained results with the forecast results on ARIMA, ANN and hybrid ANN
models [6] are presented to show that the proposed new model has advantages
over the known models in terms of reducing forecast errors.

Next, the paper is organized as follows: the following section presents a
new solution for the prediction of nonstationary time series, which is model of a
multivalued polymorphic wavelet network. In section 3, on the basis of the pro-
posed model the forecast for three known time series is carried out and the re-
sults are compared with the forecast results obtained on other models (ARIMA,
ANN, hybrid ANN). Finally, section 4 contains the conclusion.

2. Forecast model based on a multiwavelet polymorphic network

As mentioned above, wavelet network is a three-layer neural network in
which the first layer is input layer, the second layer is hidden layer and the third
layer is output layer. Various structures of wavelet networks are proposed; how-
ever, their general idea is to adjust the parameters of compression and shift of

A

145


http://moit.vivt.ru/

MojaenupoBanue, ONTHMH3ALNUS U HHPOPMAIIMOHHBIE TEXHOJIOTHH. 2018
Hayunwrii skypHaia, Tom 6, Ne 4 http://moit.vivt.ru/

wavelet neurons for the best data learning. Thus, in [16], the structure of a mul-
tiwavelet neural network is proposed, where a multidimensional wavelet is used
as an activation function of wavelet neurons in a hidden layer, which allows to
approximate multidimensional functions. Also, in the works [17, 18] a poly-
morphic wavelet network is proposed, characterized by the presence of an addi-
tional configurable parameter of the mother wavelet and allowing more accurate
approximation of nonstationary time series. In this paper, we proposed a new
structure of the wavelet network that combines the advantages of the wavelet
networks considered in [17, 18, 19].

The output of the traditional multiwavelet network [12] is determined by
the equation:

A m
90 =0, 06w) = Wil + D Wi W, (0 + 2w x,, (2)
i= i=

where ¥j(x) — a multidimensional wavelet which is set as the product of m sca-
lar wavelets, x — the input data vector, m — number of inputs, A — the number of
hidden wavelet neuron and w — parameters of a network: wf?,.; — weight bias,
wl%; — weight linear relationships and wt?; — weight of non-linear relationships.
The multidimensional wavelet in formula (1) is calculated with

v,00=T[v@), @

where y is the mother wavelet and

[
X = Wi

ij [1] : (3)
Wio)ii

In the expression (3) i=1, ..., m, j=1, ..., A+1, will s, — parameters of shift
and witl ,,;, — parameters of the scale of the wavelets.

Mother wavelets commonly used as first derivative of the Gaussian of the
so-called "WAVE-wavelet":

Z

2

—0.52”
W(Zij) = ;e : (4)
the second derivative of Gaussian so-called "Mexican hat":
-0.5722
w(zg)=(1-22)e ", (5)

or wavelet Morlet:
0522
w(z;) =cos(5z;)e " | ©)
The choice of the mother wavelet depends on the problem to be solved
and is not limited to the above functions, in particular, it is possible to use or-
thogonal wavelets and wavelet frames.
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In multiwavelet polymorphic network (Figure 1) mother wavelets are
used with an additional adjustable parameter that changes the shape of the
wavelet in a way different from compression and shift [17]. For example, we
can use the polymorphic mother wavelet Superposed LOGistic functions (*'lo-
gistics functions superposition™), known as SLOG:

1 1 1 1

1+e*2ij+""&]>ij - 1+e - 1+e*Zir3W5])ij 1+e*ZirWﬁ])u
where witl . is an additional customizable parameter of the wavelet shape that
determines the rate of attenuation. Then (2) will look like:
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Figure 1 - A multiwavelet polymorphic network

In this study we implement a multiwavelet polymorphic network with a
linear connection between the wavelet neuron of input and output layers whith
help weight linear relationships w®, (Figure 1). Thus, the wavelet network com-
bines the advantages of AR-models and ANN , due to the presence of linear w.
and non-linear w?, relationships.

The full vector of network parameters includes w=(w;, w2, wial ;.
W 55, w5, witl ). These settings are configured during the process of net-
work training by minimizing the root mean square error
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1< N N2
E :%;(yp_yp) , (7)

where n is the number used for the network training examples, Yy, is the desired
value of network output and y, is the actual value of the network output. The
root mean square error is minimized by one of the iterative methods of multidi-
mensional optimization [20] using partial derivatives of the root square error on
the network parameters:
OE 1 oy
et ®)
w N oW

where e,=Y,— ¥p. Using the expression (8), we can find partial derivatives of the
root mean square error for all network parameters, followed by formulas to re-
calculate the network parameters at each iteration [19]:

oE
Wy =W, _77—+K(Wv _Wv—l), (9)
where v is the number of iterations, # is the learning speed parameter and « is
the moment parameter. The specific values of the parameters » and x are de-
pendent on the iterative method of multidimensional optimization.
The proposed forecast method, as well as most methods related to time
series processing, based on the construction of delay vectors:

Xn = (Xgs Xpagreor Xpopog) SN =12, N = p
and the construction of the target vector
y = (xp+1, X Xy),

where N is the number of time series counts, p is the number of delays.

Delay vectors and target vector are used to train a multiwavelet polymor-
phic network. In particular, delay vectors X, are fed to the input of a multiwave-
let polymorphic network and then response vector ¥ is formed

yn (Xn) = gz (Xn’Wv) .

Then, based on the values of the vectors y and ¥, the root mean square er-
ror of the network is determined by the formula (7). This error is minimized us-
ing the one of the iterative methods of multidimensional optimization (in the
examples given — the Broyden-Fletcher-Goldfarb-Shanno method). The network
parameters are adjusted using the training rule (9).

To predict the time series with the help of a trained multiwavelet poly-
morphic network, an iterative method is used, consisting the sequential receipt
of the forecast by one step (time interval) with the addition of its result to the
original data. First, the original delay vector X; = (Xy_p.1: Xy_pszr-s Xy )" i built,

on the basis of which a multiwavelet polymorphic network makes a prediction

A
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for one step: Xy., =9, (X,;W). Then the resulting value is added to the original
delay vector and a new vector X, = (Xy_y.o, Xy_p.are Rna) IS built. After that the
forecast is made for another step X,., =9, (X,;W) and so on:

)A((k+1) = g/l()A(k;VAV),
where w are the parameters of the trained multiwavelet polymorphic network,
k=1,2,..., K, and K is the number of predicted time series counts.

3. The results of computational experiments and discussion

In order to test the efficiency and effectiveness of the proposed forecast
model, three time series were taken as experimental data (Table 1) from well-
known in statistical studies the Time Series Data Library (TSDL) repository
[21]: the Wolf’s sunspot data, the Canadian lynx data and the British
pound/United States dollar exchange rate data. Only the one-step-ahead fore-
casting is considered.

Table 1 - Sample compositions in three data sets

Series Sample size Training set | Test set (size)
(size)

Sunspot 288 1700 —1920 (221) | 1921-1987 (67)

Lynx 114 1821-1920 (100) |1921-1934 (14)

Exchange rate 731 1980 -1992 (679) | 1993 (52)

MAD (Mean Absolute Deviation) and MSE (Mean Squared Error) were used to
compare the forecasting effectiveness of different models:

K K

MAD:iZ\ei—é\, MSE:iZ(ei)Z,

K i=1 K i=1
where ep,=yi — yi, K is the prediction interval, y is the actual value of the series
level, y is the forecast value of the series level. Table 2 and Figure 2 show the
results of forecasting of Wolf's sunspot data. Two forecasting periods were
used, 35 and 67 years. ARIMA model 9x0x0 was used for the forecast. As
shown in [6], this model is the most minimalistic among all ARIMA models
generating close - to-magnitude prediction errors and often used in many other
studies, for example in [8, 22]. Also, an ANN neural network model containing
4 x 4 x 1 neurons was used for the forecast, which was substantiated in [6, 22].

Table 2 - Forecasting comparison for sunspot data

| | 35 points ahead | 67 points ahead
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MSE MAD MSE MAD
ARIMA 216.965 11.319 306.08217 13.033739
ANN 205.302 10.243 351.19366 13.544365
Zhang'sHybrid | 186.827 10.831 280.15956 12.780186
Model
MWPN 151.825 9.1351 272.49066 12.420121
0 + MWPN
Actual
200 -
150 -
100 A
50 -
0 : , . v r v .
0 10 20 30 40 50 60

Figure 2 - Forecasting Wolf's sunspot with a multiwavelet polymorphic network

Comparison of the results shows that when using a multiwavelet polymorphic
network (MWPN) containing 9 x 4 x 1 wavelet neurons for forecasting, MSE
predictions can be improved by 18.735% and 2.737%, respectively, compared
to the Zhang's Hybrid Model [6].

Similarly, the Canadian lynx data was processed.The forecast using
ARIMA is performed on the model of the order of 12 X 0 X 0. This minimalis-
tic model was also used in [6,8]. A neural network containing 7 X 5 X 1 neu-
rons [6] gives a slightly better prediction, compared to the ARIMA model. Fig-
ure 3 shows the results of the prediction using a multiwavelet polymorphic net-
work containing 2 X 7 X 1 neurons. A comparison of the results (Table 3, Fig-
ure 3) shows that when using a multiwavelet polymorphic network, MSE pre-
dictions can be improved by 54.889% compared to the Chang hybrid model [6].
Here, the natural logarithm of the original data was used in constructing the
model.

Table 3 - Lynx forecasting results.

MSE MAD
ARIMA 0.020486 0.112255
ANN 0.020466 0.112109
Zhang's Hybrid model 0.017233 0.103972
MWPN 0.007774 0.063614
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Figure 3- Forecasting of the Canadian lynx by a multiwavelet polymorphic network

The forecast for the British pound / United States dollar exchange rate da-
ta was performed for the prediction interval of 1, 6 and 12 months using the
ARIMA 0 x 1 x 0 model, the neural network ANN model containing 7 x 6 x 1
neurons, the Zhang's Hybrid Model [6] and a multiwavelet polymorphic net-
work containing 1 x 7 x 1 neurons (Fig. 4). Comparison of the results (Table 4,
Figure 4) shows that using a multiwavelet polymorphic network, MSE predic-
tions can be improved compared to the hybrid model by 41.768%, 16.496% and

22.917%, respectively.

Table 4 - Exchange rate forecasting results (All MSE values should be multiplied by 10°)

1 month 6 months 12 months

MSE MAD MSE MAD MSE MAD
ARIMA |3.68493 | 0.005016 | 5.65747 | 0.0060447 | 4.52977 |0.005359
ANN 2.76375 |0.004218 | 5.71096 | 0.0059458 | 4.52657 | 0.005251
Zhang's | 2.67259 |0.004146 | 5.65507 | 0.0058823 |4.35907 |0.005121
Hybrid
model
MWPN | 1.55629 |0.002873 |4.72234 | 0.0052145 | 3.31015 | 0.004231

151



http://moit.vivt.ru/

MojaenupoBanue, ONTHMH3ALNUS U HHPOPMAIIMOHHBIE TEXHOJIOTHH. 2018
Hayunwrii skypHaia, Tom 6, Ne 4 http://moit.vivt.ru/

0.22

vvvvv MWPN

Actual
0.20 ctua

0.18

0,16

0.14 4

0.12

0.10 T T T T T T
0 10 20 30 40 50

Figure 4 - Forecasting the British pound / United States dollar exchange rate with a multi-
wavelet polymorphic network

4. Conclusion

In this paper, the structure of a multiwavelet polymorphic network and
the technology of forecasting non-stationary time series based on it are present-
ed. The examples of short-term forecasts of known time series showed that the
accuracy obtained with forecast model based on multiwavelet polymorphic
network exceeds the accuracy obtained with models ARIMA, ANN and hybrid
ANN (combines the ARIMA and ANN). This is achieved due to the introduc-
tion in the multiwavelet network of some special additional customizable pa-
rameters and, as a result, better adaptability is reached. Moreover, for the wave-
let network to perform well in the presence of linearity, we use linear connec-
tions between the wavelet neurons of input and output layers. The proposed
technology can be used to predict the time series forecasting generated by dy-
namic processes of a different nature.
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C.H. Bep3ynos, H.M. JIsruenko
INPOT'HO3NPOBAHUE HECTAIIMOHAPHBIX BPEMEHHBIX PA10OB
HA OCHOBE MYJbTUBEUBJETHO! NOJUMOP®HOU CETHU
HUncemumym asmomamuku u ungopmayuonnvlx mexuonoautt HAH KP,
buwxex, Kvipevizcman

Hna npocHosuposanus HeCmayUuoHAPHbIX BPEMEHHbIX PSA008 CYUecmeyenm MHO20
Memo0o8 u mooeneu, 00HAKO, NpodIeMa MOYHOCMU U A0eK8AMHOCMU NPOSHO3a MAKUX psi-
008 NO-NpedcHemy AGIAeMcs akmyanlvhol. B nacmoaweii cmamve npednodicena Hoeas mo-
0elb NPO2HO3d, OCHOBAHHASA HA MYTbMUBEUBIEMHOU cemu ¢ OONOJIHUMENbHLIMU HACMPAUEA-
emMbIMU NApamMempamu, Ha36aHHOU NOAUMOPPHOU. Dppekmuenocmsb nPeonoHceHHOU MOOenU
CPABHEHA ¢ XOPOULO U38ECHHBIMU MOOENIAMU NPOSHO3A 6PEMEHHBIX PAO0E: MOOEIbI0 A8mope-
2PecCUOHHO20 UHMESPUPOBAHHO20 CKONb3AUIE20 CPEOHEe20, MHO2OCIOUHbIM NePCenmpOHOM U
2UOPUOHOU MOOeNbI0, KOMOUHUpYouel obe ykazauwHvle Mooenu. B kauecmee skcnepumen-
MANbHBIX OAHHBIX ObLIU UCNONL30BANI MPU PEATbHbIX, XOPOUO U3BECIHBIX 8 CIAMUCTUKE
8DEMEHHBIX psoa: OaHHble O COIHEUHbIX namHax Bonvgha, danmvie o nonynsayuu Kanaockou
puicu u oannvie 006 obmennom Kypce bpumarnckozo gpynma k ooanapy CILIA. Cpasnenue no-
Ka3ano, 4mo npeoiodNCeHHAsl MOOeNb NPOSHO3A HA OCHOBE MYIbIMUBEL8NEeMHOU NOIUMOPDHOU
cemu obnaoaem meHvuiel OWUOKOU NPOSHO3A OJisl 8CeX PACCMOMPEHHbIX pA008. Imo 0o-
cmueHymo 01a200aps 66€0eHUI0 OONOIHUMENbHBIX HACMPAUBAEMbIX NAPAMEMPOE 6 Gellnem-
cemb, KOMOpble NO360IAIOM JyHUe A0AnMuUpo8amvcs K HeCMayuoHapHoU Npupooe 8pemeH-
HbIX psi0os. Kpome mozo, nanuuue 6 cmpykmype npeonodxiceHHol eeusiem-cemu npamblx ces-
3ell MedHcoy Gelignem-HeupoHamu 6X00H020 U 8bIXOOHO20 CN0e8 Yyduiaem ee npocHOCmuYe-
cKUe colcmea Oisl PEMEHHbIX PA008, UMeIoWux JuHelnylo cocmasnaiowyio. Ilpednoxcen-
HAsl MEXHON02UsL MOJicem Oblmb UCNONb308AHA O/l NPOSHO3A BPEMEHHbIX PSAO0E, ceHepupye-
MbIX OUHAMUYECKUMU NPOYECCamu pasiuyHol u3uiecKou npupoobl.

KiroueBble cjioBa: MPOrHO3UPOBAHUE, HECTALMOHAPHBIE BPEMEHHBIE PS/IbI,
MYJIbTUBEUBIIETHAS CETh, JOMOJHUTEIbHbIE HacTpauBaeMmble napamerpsl, ARIMA-moznens,
HCKYCCTBEHHAas HEHpOHHas CeTh, TMOPUAHAS MOJIEIb.
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