Keywords: approximation, significance level, estimation accuracy, laplace function, econometric model, expert, estimation, probability distribution
Mathematical modeling of the collective solution accuracy
UDC 519.816
DOI: 10.26102/2310-6018/2022.36.1.001
Currently, the problem of collective decision-making is one of the most relevant in the organization of effective management in social and economic systems. One of the main issues in the theory of expert assessments is the assessment of the group solution quality. The article discusses the matters of assessing the socio-economic indicator by independent experts. The centered random variables sums value of individual estimates is accepted as the error of group estimation. The situation is examined when the values of the indicator have an arbitrary distribution with known and unknown parameters. Two algorithms have been developed to determine the required amount of experts depending on the accuracy and reliability of the assessment. The first algorithm is used to find the confidence interval of mathematical expectation when the variance of the indicator is not specified. In this event, an iterative process is undertaken to ascertain the volume of representativeness for the confidence interval of variance with a given accuracy and reliability. The second algorithm is employed to construct a confidence interval for variance when the number of experts is more than three. The important task of quantifying the proportion (percentage) of possible errors within a predefined interval in measuring the indicator has been solved. An econometric model is designed for the Laplace function. The case of determining the number of experts to evaluate an indicator having a uniform and exponential distribution over a given interval is considered. An example of the practical implementation of the devised method is shown.
1. Lukashin Ju.P., Rahlina L.I. Sovremennye napravlenija statisticheskogo analiza vzaimosvjazej i zavisimostej. M.: IMJeMO RAN; 2012. 54 s. (In Russ.)
2. Ruposov V. L. Metody opredelenija kolichestva jekspertov. Vestnik IrGTU. 2015;3(98):286-292. (In Russ.)
3. Ganicheva A. V., Ganichev A. V. Matematicheskoe modelirovanie ocenki kachestva kollektivnogo reshenija. Jekonomika. Informatika = Economics. Information Technologies. 2020;47(3):573-582. (In Russ.)
4. Svetlakov A.A. Svinolupov Ju.G., Shumakov E.V. Rekurrentnyj sposob postroenija doveritel'nyh intervalov ocenivanija neizvestnyh znachenij izmerjaemyh velichin. Pribory. 2006:54-59. (In Russ.)
5. Martynov G.V. Vychislenie funkcii normal'nogo raspredelenija. Itogi nauki i tehniki. Ser. Teor. verojatn. Mat. stat. Teor. kibernet. 1979;17:57–84. (In Russ.)
6. Osipov L. A. Jekonomichnaja zamena integrala verojatnostej gaussa stepennoj funkciej. Nauka i mir = Sciense and world. 2016;1(9(37)):8-9. (In Russ.)
7. Osipov L. A. Approksimacija tablichnogo integrala verojatnosti Gaussa pokazatel'noj funkciej. Nauka i tehnika transporta = Sciense and technology in transport. 2013;3:11-15. (In Russ.)
8. Kramer W., Blomquist F. Algorithms with Guaranteed Error Bounds for the Error Function and the Complementary Error Function. Bergische University; 2000. 46 p.
9. Tesler G. S., Zung Zy Hak. Vychislenie funkcii integrala verojatnosti i ej obratnoj. Matematichnі mashini і sistemi = Mathematical Machines and Systems. 2004;3:31-40. (In Russ.)
10. Chevillard S. The functions erf and erfc computed with arbitrary precision. Laboratory of Parallel Computing; 2010. 41 p. (In Russ.)
11. Ganicheva A.V. Ocenka chisla slagaemyh central'noj predel'noj teoremy. Prikladnaja matematika i voprosy upravlenija = Applied Mathematics and Control Sciences. 2020;4:7-19. (In Russ.)
12. Ganicheva A.V., Ganichev A.V. Metod postroenija doveritel'nogo intervala dlja dispersii sluchajnoj velichiny. Vestnik NGUJeU. 2021;3:146-155. (In Russ.)
13. Orlov A.I. Organizacionno-jekonomicheskoe modelirovanie: uchebnik: v 3 ch. Ch. 2: Jekspertnye ocenki. M: Izd-vo MGTU im. N.Je. Baumana; 2011. 486 p. (In Russ.)
Keywords: approximation, significance level, estimation accuracy, laplace function, econometric model, expert, estimation, probability distribution
For citation: Ganicheva A.V., Ganichev A.V. Mathematical modeling of the collective solution accuracy. Modeling, Optimization and Information Technology. 2022;10(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1109 DOI: 10.26102/2310-6018/2022.36.1.001 (In Russ).
Received 10.12.2021
Revised 06.01.2022
Accepted 18.01.2022
Published 31.03.2022