Keywords: equation of thermal conductivity, software structure, interval arithmetic, hot rolling, energy-power calculations
Functional content and structure of a software package for modeling the temperature of a hot-rolled strip with interval parameters
UDC 519.6
DOI: 10.26102/2310-6018/2023.43.4.032
The article considers the structure and functional content of a software package for modeling the temperature regime in the strip and working rolls during hot rolling of steel. Software with real input parameters and interval input parameters has been developed for modeling of temperature. This article discusses software with interval input parameters, its content and design. The article presents the structure of software for modeling temperature in interval values, thermal conductivity equations for solving problems of modeling temperatures in the deformation zone, on the interstand gap and intermediate roller with interval input parameters. The scheme of the temperature modeling algorithm is considered, taking into account the configurations of cooling systems at a hot rolling mill, and an algorithm for finding friction coefficients taking into account interval input parameters is separately presented. The main functions of the implemented library of classical interval arithmetic are described with an indication of the mathematical description. The description of the interface for software modeling the temperature of the strip with interval input parameters and some functions is given. Groups of software input parameters are presented with a description of possible values and their units of measurement.
1. Grudev A.P., Mashkin L.F., Khanin M.I. Tekhnologiya prokatnogo proizvodstva: Uchebnik dlya vuzov. Moscow, Metallurgiya; 1994. 656 p.
2. Dabas M., Saraev P. Modeling of temperature strip with interval parameters in interstand gap in hot rolling. 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2021;3;749–751.
3. Oreshina M., Pimenov P., Dabas M. Interactive training model of the thermal mode for a hot rolling mill. 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). 2021;3;333–335.
4. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki. Moscow, Glavizdat; 1953. 660 p.
5. Dabas M.R., Zubkova N.S., Kobzev A.A. Adaptacija matematicheskoj modeli teplovogo rezhima polosy v chistovoj gruppe kletej stana gorjachej prokatki. XVII Vserossijskaja shkola-konferencija molodyh uchenyh «Upravlenie bol'shimi sistemami». 2021;515–521.
6. Dabas M.R. Matematicheskoe modelirovanie teplovogo rezhima polosy na mezhkletevom promezhutke pri gorjachej prokatke. Sbornik materialov Shestnadcatoj Vserossijskoj nauchno-prakticheskoj konferencii studentov i aspirantov. 2019;258–260.
7. Pimenov V.A., Pogodaev A.K., Kovalev D.A. Vlijanie teplovyh rezhimov gorjachej prokatki na obrazovanie defektov poverhnosti holodnokatanogo lista. Proizvodstvo prokata = Rolled Products Manufacturing. 2018;12;8–14.
8. Sharyj S.P. Konechnomernyj interval'nyj analiz. Novosibirsk, XYZ; 2021. 650 p.
9. Levin V.I. Sravnenie intervalov i optimizacionnye zadachi s interval'nymi parametrami. Radiojelektronika, informatika, upravlenie. = Radio Electronic Computer Science Control. 2002;1(7);57– 62.
10. Verzhbickij V.M. Chislennye metody. Matematicheskij analiz i obyknovennye differencial'nye uravnenija. Moscow, Vysshaja shkola; 2001. 382 p.
Keywords: equation of thermal conductivity, software structure, interval arithmetic, hot rolling, energy-power calculations
For citation: Dabas M.R., Saraev P.V. Functional content and structure of a software package for modeling the temperature of a hot-rolled strip with interval parameters. Modeling, Optimization and Information Technology. 2023;11(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1490 DOI: 10.26102/2310-6018/2023.43.4.032 (In Russ).
Received 12.12.2023
Revised 22.12.2023
Accepted 26.12.2023
Published 31.12.2023