Математическое моделирование процесса формирования усадочной раковины в конечных слябах при разливке на МНЛЗ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mathematical modeling of the process of formation shrinkage cavity in end slabs during casting on continuous casting machine

Kabakov Z.K.,  idGabelaja D.I., idChuev A.A.

UDC 669-1
DOI: 10.26102/2310-6018/2024.47.4.021

  • Abstract
  • List of references
  • About authors

The modeling of the dynamics of the profile formation and the depth of the shrinkage cavity is performed based on mathematical models of the process of volumetric and linear shrinkage, constructed using the finite difference method with an explicit scheme of approximation of partial derivatives. These models, unlike the known previous ones, take into account the different nature of the metal solidification process depending on the chemical composition and use a two-dimensional computational domain divided into a given number of nodes along the x and z coordinates. The modeling uses a system of algorithms for calculating the solidification dynamics of a continuously cast billet, linear and volumetric shrinkage of metal, as well as the process of formation of a shrinkage cavity. In addition, the influence of the carbon concentration in steel, its thermophysical properties and technological parameters of continuous casting on the process of metal solidification is taken into account. The implementation is presented in the form of a computer program, the input parameters of the modeling are the chemical composition of steel and the technological parameters of casting, the output parameters are the values of the thermophysical coefficients and the profile of the shrinkage cavity in the final slab. Verification was performed by comparing the calculated data with the experimental data and showed that the calculated data differ from the experimental data by less than 1%. The possibility of increasing the accuracy of the results by increasing the number of nodes in the thickness and height of the workpiece is shown, while the dependence of the accuracy on the number of nodes in the thickness of the workpiece is most pronounced. The proposed model allows reducing metal losses during casting associated with the formation of a shrinkage cavity and increasing the energy and resource efficiency of modern metallurgical enterprises.

1. Smirnov A.N., Makulov S.L., Safonov V.M., Tsuprun A.Yu. Krupnyi slitok. Donetsk: Veber; 2009. 278 p. (In Russ.).

2. Dyudkin D.A., Krupman L.I., Maksimenko D.M. Usadochnye rakoviny v stal'nykh slitkakh i zagotovkakh. Moscow: Metallurgiya; 1983. 137 p. (In Russ.).

3. Marchenko I.K., Brovman M.Ya. Proizvodstvo krupnykh stal'nykh slitkov. Moscow: Metallurgiya; 1980. 240 p. (In Russ.).

4. Khasin G.A. O matematicheskom modelirovanii protsessa formirovaniya poverkhnostnykh sloev slitka. Izvestiya. Ferrous Metallurgy. 1987;(8):133–135. (In Russ.).

5. Zou J., Tseng A.A. Microscopic modeling of fundamental phase transformations in continuous castings of steel. Metallurgical Transactions A. 1992;23(2):457–467. https://doi.org/10.1007/BF02801163

6. Devyatov D.Kh., Panteleev I.I. Opredelenie koeffitsientov teplootdachi v zone vtorichnogo okhlazhdeniya MNLZ s pomoshch'yu identifitsiruemoi matematicheskoi modeli. Izvestiya. Ferrous Metallurgy. 1999;(8):62–65. (In Russ.).

7. Danilov V.L., Korablin A.I. Matematicheskaya model' deformirovaniya nepreryvnolitykh stal'nykh slyabov. BMSTU Journal of Mechanical Engineering. 1989;(12):142–145. (In Russ.).

8. Okamura K. Buckling analysis of continuously cast slabs using a 3D plastic creep model. Tetsu-to-Hagane. 1987;(12):175.

9. Kabakov Z.K., Gabelaya D.I., Chuev A.A. Sposob rascheta skorosti deformatsii pri provedenii "myagkogo" obzhatiya dlya kompensatsii usadki nepreryvnolitoi zagotovki s tsel'yu snizheniya osevoi rykhlosti. In: Metallurgiya: tekhnologii, innovatsii, kachestvo: Trudy XXIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 23–25 November 2022, Novokuznetsk, Russia. Novokuznetsk: Siberian State Industrial University; 2022. pp. 261–267. (In Russ.).

10. Gabelaia D.I., Kabakov Z.K., Chuev A.A. Investigation and calculating of shrinkage processes in a continuously cast billet during casting on a slab caster. Metallurg. 2023;(7):19–22. (In Russ.). https://doi.org/10.52351/00260827_2023_07_19

11. Kabakov Z.K., Gabelaya D.I., Chuev A.A. Matematicheskaya model' formirovaniya usadochnoi rakoviny nepreryvnolitoi zagotovki na MNLZ. In: Intellektual'no-informatsionnye tekhnologii i intellektual'nyi biznes (INFOS-2022): Materialy Trinadtsatoi Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 29–30 June 2022, Vologda, Russia. Vologda: Vologda State University; 2022. pp. 14–18. (In Russ.).

12. Thomas B.G., Ojeda C. Ideal Taper Prediction for Slab Casting. In: 2003 ISSTech Steelmaking Conference, 27–30 April 2003, Indianapolis, USA. Warrendale: ISS-AIMEPA; 2003. pp. 295–308.

13. Dyudkin D.A. Usloviya formirovaniya kontsevoi chasti nepreryvnogo slitka. In: Problemy stal'nogo slitka: Trudy III konferentsii po slitku. Moscow: Metallurgiya; 1969. pp. 375–381. (In Russ.).

Kabakov Zotei Konstantinovich
doctor of Technical Sciences, professor

eLibrary |

Cherepovets State University

Cherepovets, Russia

Gabelaja David Ivlerievich
Candidate of Techical Sciences,, docent

ORCID | eLibrary |

Cherepovets State University

Cherepovets, Russia

Chuev Anton Andreevich

ORCID | eLibrary |

Cherepovets State University

Cherepovets, Russia

Keywords: continuous casting, mathematical model, finite difference method, shrinkage cavity, end slab, approximation

For citation: Kabakov Z.K., Gabelaja D.I., Chuev A.A. Mathematical modeling of the process of formation shrinkage cavity in end slabs during casting on continuous casting machine. Modeling, Optimization and Information Technology. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1732 DOI: 10.26102/2310-6018/2024.47.4.021 (In Russ).

19

Full text in PDF

Received 29.10.2024

Revised 19.11.2024

Accepted 21.11.2024