Построение регрессионных моделей с переключающимися нелинейными преобразованиями для назначенной объясняющей переменной
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Construction of regression models with switching nonlinear transformations for the assigned explanatory variable

idBazilevskiy M.P.

UDC 519.862.6
DOI: 10.26102/2310-6018/2025.49.2.024

  • Abstract
  • List of references
  • About authors

Often, when constructing regression models, it is necessary to resort to nonlinear transformations of explanatory variables. Both elementary and non-elementary functions can be used for this. This is done because many patterns in nature are complex and poorly described by linear dependencies. Usually, the transformations of explanatory variables in a regression model are constant for all observations of the sample. This work is devoted to constructing nonlinear regressions with switching transformations of the selected explanatory variable. In this case, the least absolute deviations method is used to estimate the unknown regression parameters. To form the rule for switching transformations, an integer function "floor" is used. A mixed 0–1 integer linear programming problem is formulated. The solution of this problem leads to both the identification of optimal estimates for nonlinear regression and the identification of a rule for switching transformations based on the values of explanatory variables. A problem of modeling the weight of aircraft fuselages is solved using this method. The nonlinear regression constructed with the proposed method using switching transformations turned out to be more accurate than the model using constant transformations over the entire sample. An advantage of the mechanism developed for constructing regression models is that thanks to the knowledge of the rules for switching transformations, the resulting regression can be used for forecasting.

Keywords: regression analysis, nonlinear regression, least absolute deviations method, mixed 0–1 integer linear programming problem, integer function «floor», weight model of aircraft fuselage

For citation: Bazilevskiy M.P. Construction of regression models with switching nonlinear transformations for the assigned explanatory variable. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1893 DOI: 10.26102/2310-6018/2025.49.2.024 (In Russ).

118

Full text in PDF

Received 13.04.2025

Revised 07.05.2025

Accepted 19.05.2025

Published 30.06.2025